Music and video have separately been used to enhance sports performance as part of preparatory routines (Szabo et al., 1999; Templin and Vernacchia, 1995), skill acquisition (Onestak, 1997) or during the intervals between games, halves or sequences (Bishop et al., 2007; Hall and Erffmeyer, 1983). Considering the applied significance of separate music and video interventions prior to and during sports performance it is surprising that no studies have examined the ergogenic effect of motivational music and video interventions in combination. The applied efficacy of combining music and video to influence sports performance is appealing because, with the advancement of communication technologies, both of these interventions can easily be implemented at sporting venues and are already utilised by recreational gym users to supplement their exercise routines (Karageorghis et al., 2006a). In the latter context it is likely that this type of intervention could influence adherence and work intensity in an exercise program culminating in health benefits as has already been suggested with music alone (Karageorghis and Terry, 1997). The theoretical underpinning for the use of music in this setting is more established than that of video (see Bishop et al., 2007, Karageorghis et al., 2006a, Priest et al., 2004). A greater number of studies have examined the ergogenic effect of music, particularly prior to or during high intensity exercise, during which, the synchronising of physiological and motor responses during exercise with music may be one means by which music is influential (Brownley et al. , 1995; Karageorghis, 2000; Simpson and Karageorghis, 2006). The ergogenic effect of music on high intensity exercise also extends to elite sports persons. Elite runner, Heile Gebreselassie, used a high-tempo popular music song to synchronise his strides in order to optimise his pacing in winning a 5000m race in 2003 (Simpson and Karageorghis, 2006). Asynchronous music, defined as not consisting of any conscious effort to synchronize movements with music tempo, is also suggested to carry this performance enhancing effect (Karageorghis, 2000). The Brunel Music Rating Inventory-2 (BMRI-2; Karageorghis et al., 2006a) and recently updated version BMRI-3 (Karageorghis, 2008) have allowed researchers to specifically identify music tracks that induce a motivational impact upon an athlete during sports performance. Motivational tracks are thought to include a high tempo beat (>120bpm), a strong rhythm, and to enhance energy and induce bodily action (Karageorghis et al., 2006b). Further influential characteristics of music have been suggested to include the rhythm response, musicality, cultural impact and association with the tracks (Karageorghis et al., 1999). Therefore music tracks that encompass all of these aspects would optimise moderate intensity exercise performance. Bishop et al., 2007 have recently extended the study of music and performance providing a rationale for the manipulation of emotional responses to music in junior tennis players. Here it was suggested that the right music can be used as a tool to ‘psych up’ in preparation for performance (arousal regulation), shift attentional focus (association/dissociation), boost self-efficacy and encourage psychological skills usage (e.g. mental imagery). Presumably during high intensity exercise participants would aim to be psyched up, may wish to dissociate from unpleasant exertion induced sensations (untrained participants only; Brownley et al., 1995), feel confident and employ appropriate psychological coping strategies. Clearly the use of appropriately selected music could induce an ergogenic effect. Theoretically, the supplementation of appropriately chosen music with video footage has the potential to enhance the beneficial effect of such interventions prior to and during sports performance. Video footage of sportspersons demonstrating mastery could manipulate the self-efficacy of an individual as part of a combined music and video intervention. This suggestion has already been supported with the use of personal motivational videos (PMVs) in competitive tennis players following a relatively short intervention period (2 weeks; Bishop and Forzoni, 2006). Self-efficacy is an individual’s belief about their capabilities to produce designated levels of performance that exercise influence over events that affect their lives (Bandura, 1977). In relation to Bandura’s (1977; 1997) self-efficacy theory, video footage of competent sports performance may improve the performance accomplishment (via self-reflection on previous successful performances) and vicarious experience components that are thought to comprise this construct thereby facilitating emotional control. It has already been suggested that the combination of music with video can stimulate positive images and help recreate feelings of confidence and memories of previous performances (Forzoni, 2006). The additive effect of music with images is further supported by evidence of stimulation of areas of the brain with music and images that are thought to complete emotional processing (Baumgartner et al., 2006). This evidence appears to suggest that music and video combined has the potential to stimulate self- efficacy and emotional engagement and may therefore enhance motivation during exercise. Watching a video also has the potential to shift attentional focus from internal stimuli to external cues. Music researchers hypothesise this effect with asynchronous music whereby attention is shifted from salient physiological cues to the external components of music particularly the rhythm and musicality components of a given track (Karageorghis and Terry, 1997). Rejeski’s (1985) parallel processing model explains this facilitative change in attentional processing. The attentional field of an individual is thought to narrow increasingly with elevations in work intensity. During low and moderate exercise external musical cues can prevail thereby reducing RPE (Borg, 1982). However, this is only hypothesised to the case at low/moderate intensities below the anaerobic threshold above which salient physiological cues are thought to dominate (Boutcher and Trenske, 1990). It is possible that increasing the strength of external cues through combining music and video may be sufficient to influence RPE above the anaerobic threshold. If supported, this suggestion could have implications for trained runners who are suggested to favour internal associative perspectives whilst performing exercise (Morgan, 1977). Evidence has been presented for the potential ergogenic effect of music and video on sports performance which, if supported could have a more powerful influence on attentional focus than video or no intervention alone. This could have implications for those who exercise whilst watching videos and listening to music. Recent evidence has been presented demonstrating the efficacy of other interventions, namely psychological skills training (PST), in dealing with significant exertion induced physical sensations in hot conditions (Barwood, Thelwell and Tipton, 2008). The aerobically trained participants in this study showed an 8% (1.15km) improvement in distance covered during a 90 minute time-trial run in hot (30°C), moist conditions (50% relative humidity; RH) by suppressing their temptation to reduce their work intensity using a range of psychological skills. The authors suggested that aspects of the PST (mental imagery, positive self-talk) may have facilitated performance by distracting the participant from unpleasant sensations elicited by hyperthermia). Theoretically both music and video interventions may function in part in a similar way, that is by distracting the individual from unpleasant sensations elicited during high intensity exercise. This has yet to be assessed under environmentally demanding temperature conditions in which tolerance to unpleasant sensations from exercise and heat will force performance to deteriorate at a faster rate (Tucker et al., 2004). This will provide an improved backdrop for distinguishing the effects of music and video interventions on performance. Given the recent research and theoretical developments the aim of this study was to examine the beneficial effect that a motivational music and video intervention could have on high intensity exercise performance under moderate environmental stress. The experiment hypothesis was that a motivational music and video intervention would significantly increase distance covered during a time-trial running task and help participants tolerate warm (~26°C), moist ambient conditions (~50%RH). If the content of the video portion of the intervention proved important, participants in a non-motivational video condition would complete the shortest distance. |