As demonstrated previously in our laboratory (Gündüz & Senturk, 2003; Kocer et al. 2008), exhaustive muscle activity leads to oxidative damage in the kidneys. In accordance with these studies, in the present experiment, exhaustive activity, as proved by elevated blood lactate and CS activity of the soleus muscle, is associated with significant elevation of tubular peroxynitrite levels, which is an oxidation product of nitric oxide. This exhaustive physical activity induced some degree of renal dysfunction such as proteinuria and glycosuria (Table 1). However other tests used to evaluate the functional integrity of the kidneys, such as GFR, urinary electrolytes and organic anion (PAH) excretions, remained within normal limits.The functional interpretation of these parameters may be subjective. To some authors who accept proteinuria and glycosuria as a benign exercise induced process (Asghar et al., 2007; Bergstein, 1999; Neumayr et al., 2005), the kidney functions of the exhausted rats in the present experiment can be totally normal, whereas for others, proteinuria, glycosuria and elevated urine cholesterol may be the criteria of impaired kidney functions in exhausted rats (Di Meo and Venditti, 2001; Maeda et al., 2004; Middlekauff et al., 1997; Momen et al., 2003; 2004; Podhorska-Okolów et al., 2004). Therefore, our results supported most of the previous studies, indicating both positive and negative effects of exhaustive exercise on kidney functions (Asghar et al., 2007; Poortmans, 1984; Poortmans and Labilloy, 1988; Poortmans and Vancalck, 1978; Neumayr et al., 2005). The authors who consider glomerular and tubular structures as the most sensitive areas are supported by the significant increase in urinary protein, glucose and cholesterol excretion in the exhausted animals (Poortmans, 1984; Poortmans and Labilloy, 1988; Poortmans and Vancalck, 1978). The elevated glomerular permselectivity to macromolecules and other tubular adaptive changes in exercisers are reported to be transient and decline rapidly after exercise and their aetiology remains unclear (Poortmans, 1984; Poortmans and Vancalck, 1978; Poortmans and Vanderstraeten, 1994). We are unable to say that elevated protein and glucose excretion return to normal levels at a certain postexercise period, since we have not studied time dependent functional changes. However, Schneider et al., 2007 reported that the most sensitive test for kidney functions is the organic anion excretion rate, and therefore we also measured an organic anion prototype PAH excretion rate both in vivo and in vitro in our study. Neither PAH excretion nor its tubular secretory portion changed significantly in the exhausted animal group (Figure 3). This in vivo result is also verified by the in- vitro excretion study, and the PAH secretion rate in the isolated PTSs from exhausted rats remained unchanged. Our data, together with the literature findings, imply that while most secretory functions of the nephron are within normal limits during heavy muscle activity, some functions depending on glomerular permeability and tubular reabsorption seem to be vulnerable (Table 1). This difference in the sensitivity of the kidney functions of exercising animals may arise from the characteristics of adaptive changes in the proximal tubule cells occurring in response to heavy muscle activity. It has been reported previously that several forms of stress in the body produce some adaptive changes in the kidney proximal tubules by stimulating self-defence mechanisms. These changes are denoted as “acquired renal cytoresistance ”(Zager et al., 1999; 2001; 2003a; 2003b; 2005; Zager and Kalhorn, 2000). Although Zager et al. (1999; 2001; 2003a; 2005; Zager and Kalhorn, 2000) did not include heavy muscle activity as a stressor, the results of the present study clearly indicated that, like other stressors, strenuous physical activity renders the kidneys more resistant to subsequent attacks, because the isolated PTSs from exhausted rats showed resistance to ATP depletion and released less LDH into the medium (Figure 2). Cholesterol accumulation is accepted as a hallmark of stress-induced cytoresistance in the proximal tubule cells, and its mechanisms have been investigated intensively (Zager et al., 1999; 2001; 2003a; 2005; Zager and Kalhorn, 2000). As with other renal cytoresistance inducers, heavy muscle activity caused a cellular cholesterol load in the proximal tubule cells. To our knowledge, there are no direct studies on the effects of heavy muscle activity on tubule cholesterol homeostasis, and our study is the first to determine the changes in cholesterol homeostasis in the proximal tubule cells. Under physiological conditions, free cholesterol biosynthesis and cholesterol influx and efflux are balanced, and cellular cholesterol levels remain normal (Chawla et al., 2001; Weber et al., 2004). In the present study, it is obvious that, like other stressors, heavy muscle activity leads to cholesterol accumulation and cytoresistance in the tubule cells by impairing either elimination/esterification of free cholesterol or its influx pathways. Previous reports show a predominance of esterified cholesterol elevation in tubule cells as a response to other stressors (Zager et al., 1999; 2001; 2003a; 2005; Zager and Kalhorn, 2000). However, the free cholesterol related increase indicates the involvement of some other unknown mechanisms in the present experiment which cannot be fully explained with our present data. Nevertheless, elevated peroxynitrite levels may be one of the causative factors, and reduced elimination of free cholesterol by nitrosylated Apoprotein A1 with elevated peroxinitrite (Shao et al., 2005) may account for the increased free cholesterol in the tubule cells of exhausted rats. Despite an obvious cholesterol elevation, most excretory kidney functions, including organic anion excretion rate, are not influenced by the free cholesterol accumulation in proximal tubule cells, whereas some reabsorptive functions such as protein endocytosis and glucose reabsorption by the apical membrane appear to be vulnerable. We have not measured tubular prostaglandin E2 levels, but previous reports regard the reduced tubular prostaglandin E2 production as responsible for the diminished apical endocytosis in exercisers (Mittleman and Zambraski, 1992; Llorente et al., 2000; Zambraski et al., 1986). Intriguingly, in the present study an unaltered PAH secretion was associated with significant accumulation in cholesterol loaded isolated tubule cells. This shows that heavy muscle activity induced cholesterol loading, by impairing the balance between influxers and effluxers, thus facilitating organic anion (as well as xenobiotics) accumulation in the cholesterol loaded proximal tubule cells. Both organic anions and xenobiotics in the blood use the same organic anion transporters (OATs) for entry into proximal tubule cells and they then exit these cells through ATP dependent ABCC2 (MRP2) and ABCC4 (MRP4), cassette transporters located at the luminal membrane of the cells (Sekine et al., 2006). Neither organic anions nor xenobiotics accumulate in the tubule cells while their entrance and exit are balanced. PAH accumulation in the tubule cells of exhausted rats shows impairment of this delicate balance. Altered PAH entry may be responsible for this imbalance, since the tubular PAH secretory rate remained unchanged in the PTSs of the exhausted rats. There are no other studies related to MRPs changes in the tubular cells of exercisers, but unaltered ATP generation in the PTSs of exhausted rats seems to support the functional integrity of these ATP dependent MRPs. Also, additional data from the literature indicating unaltered ABCA1 expression, another member of ATP dependent MRPs family in cholesterol loaded cytoresistant tubule cells (Zager et al., 2003b), is also supportive evidence for our unchanged PAH secretion result. Despite the lack of direct evidence related to organic anion transporter (OAT) activity in the cholesterol loaded kidney cells of the exercisers, some indirect data such as basolateral preference of cholesterol accumulation (Imai et al., 1992) and different action of membrane cholesterol enrichment on carrier mediated transport processes (Levi et al., 1990), suggest that OAT1 and OAT3 activities localized at the basolateral membrane, which mediate the entries of several endogenous and exogenous substances into the proximal tubule cells, can be influenced earlier by cholesterol accumulation than the effluxing transporters localized apically. Furthermore, the elevated number of OAT1/bile acid transporters in the liver of chronic exercisers (Wilund et al., 2008) supports our view concerning the sensitivity of OATs activity to exercise induced cholesterol elevation in the cells. Contrary to Zager et al., 2001, who maintain that hepatic cholesterol does not change during cytoresistance, we found a similar cholesterol elevation in the liver of exhausted rats. Since both organs are located in the same splanchnic area and are subjected to reduced perfusion during each period of exercise, similar stress induced cholesterol accumulation would be a normal result, not a paradox. Therefore, the similar changes of OATs activities in both organs loaded with cholesterol are a logical expectation. The biological significance of increased organic anion transport without alteration in its luminal secretion rate in animals or humans subjected to heavy muscle activity can be a topic for further study. The impaired balance between entrance and exit of xenobiotic/organic anions is important data, implying the elevated susceptibility to nephrotoxicity in humans/animals subjected to heavy muscle activity. This may have clinical significance, especially in those exposed simultaneously to heavy muscle activity and xenobiotics, pollutants, heavy metals and antibiotics which are eliminated by the kidneys through the same transporters. However, this hypothesis requires further studies for proof. |