The aim of this study was to compare a 12-week home-based, diet and interval exercise programme to a diet and continuous aerobic exercise programme in order to determine which protocol resulted in greater benefits in aerobic fitness, blood lipids, body composition and metabolism. In general terms, while results demonstrated beneficial effects associated with both interventions, only the combination of interval training and caloric restriction resulted in significant improvement in VLDL-C. Results from this study showed that while there were improvements in aerobic fitness in both groups over time, there were no significant differences in these measures between groups post-intervention. This outcome was surprising due to the number of studies that have reported a higher VO2peak after high-intensity exercise compared to lower intensity exercise (Adeniran and Toriola, 1988; King et al., 2001; O’Donovon et al., 2005; Sokmen et al., 2002), even when total energy was equal between interventions (King et al., 2001; O’Donovan et al., 2005). Use of higher intensity exercise (80% VO2peak, Kraus et al., 2002; 80% VO2peak, O’Donovon et al., 2005; 90% HRmax, Adeniran and Toriola, 1988; 95% VO2peak, King et al., 2001; 120-150% VO2max, Sokmen et al., 2002) than that used in the current study (intervals of 70-75% VO2peak) may account for this discrepancy in results, as higher intensity exercise places a greater overload on the cardiopulmonary system, which in turn should result in greater improvements in fitness. Further, while the need for adherence to exercise (frequency, intensity and duration) and accurate reporting was stressed to participants, it is possible that these requirements may not have been met, which in turn may have contributed to the insignificant differences in aerobic fitness between groups. Nonetheless, benefits observed in both groups, demonstrated by increased time to exhaustion (NS) on the GXT of 5 min 33 s (INT group) and 5 min 20 s (CON group), translate to potential improvement in cardiovascular outcomes, as a 1 min increase in treadmill exercise time during a GXT has been associated with a reduction in mortality (Blair et al., 1995). Another health measure that is typically problematic in obese individuals relates to a blood lipid profile that does not support healthy function (O’Donovan et al., 2005). Normal values for blood lipids are as follows: TC < 5.5 mM/L, triglycerides < 1.8 mM/L, HDL-C = 1.1 - 3.5 mM/L, LDL-C < 3.5 mM/L and VLDL-C < 1.04 mM/L (Safeer and Ugalat, 2002). Of relevance, results from this study demonstrated that 12 weeks of diet and interval exercise resulted in TC and LDL-C values approaching normal levels in the INT group. Further, a significant improvement in VLDL-C over time was demonstrated in the INT group only. These results may be due to baseline values that were in the upper range for these measures in the INT group, whereas these measures were well within normal range for the CON group. Further, the significant decrease in VLDL-C over time in the INT group may explain the lower CRC (NS; ES = 0.58; 18.7% vs 11.9% decline in INT vs CON group) that occurred over the course of the intervention in this group. Results from this study support other studies that have reported improvement in blood lipids either after an exercise programme (Weintraub et al., 1989; Sugiura et al., 2002) or following a diet intervention (Dattilo and Kris-Etherton, 1992). Weintraub et al., 1989 suggested that improvement in blood lipids as a result of exercise may be due to greater lipoprotein lipase activity and a consequent reduction in triglyceride levels. Lack of significant differences in blood lipids between the two groups post-intervention may have been due to the short intervention period used, as well as the use of exercise intensities in the INT group that were not high enough to elicit change. For example, O’Donovan et al., 2005 reported significant improvement in TC, LDL-C and HDL-C after 24 weeks of exercise performed at 80% VO2peak. Declines in total fat and gynoid fat mass were reflected by significant main effects for time, as well as moderate and large ES in both groups. In addition, the decrease in body mass over time (significant main effect only) was reflected by a moderate ES in the INT group only. This result for body mass in the INT group most likely reflects the greater total fat and android fat mass loss in this group (~22.5% and 28.5%) compared to the CON group (~17% and 19.2%), combined with minimal changes over time between groups for lean mass and gynoid fat mass. These results support other similar studies that reported body mass loss (Schmidt et al., 2001; Volek et al., 2005) and fat mass loss (King et al., 2001) after exercise interventions (King et al., 2001; Schmidt et al., 2001) and a diet and exercise intervention (Volek et al., 2005). It was expected that the INT group would lose more fat mass (including gynoid and android fat mass) compared to the CON group due to reports of greater fat burning associated with higher intensity exercise compared to lower intensity exercise (Tremblay et al., 1994; King et al., 2001: King et al., 2002). While changes in body composition were not significantly different between groups in the current study, the percentage change experienced for total fat mass and android and gynoid fat loss were higher in the INT group. As noted earlier, higher exercise intensities, which may have resulted in greater improvement in aerobic fitness and hence greater fat oxidation, may have been needed in order to elicit significant changes in body composition in the INT group compared to the CON group. While caloric restriction has been reported to decrease lean mass (Pritchard et al., 1997), resulting in a decline in RMR (Jakicic, 2002), the addition of an exercise component to a diet intervention has been shown to maintain (Tremblay et al., 1994) or attenuate this decline in lean mass (Pritchard et al., 1997). This in turn can preserve RMR (Treuth et al., 1996). The current study found that even though it appeared that participants maintained their strict diet (as suggested by similar kcal intake values recorded during weeks 1 and 12 and the need to undertake regular weigh-ins at a weight loss agency), lean mass and RMR were not significantly altered over the course of the intervention. An explanation for the lack of significant increase in lean mass, and consequently RMR in the INT group compared to the CON group, may have been due to the mode of exercise undertaken in that walking is not likely to induce significant increases in muscle mass. Lack of significant change in fat-free mass in obese women following an 8-week walking programme was also reported by King et al., 2001. Further, as high-intensity exercise (85% - 95% VO2peak) has been shown to increase RMR, compared to lower intensity exercise (King et al., 2002; Poehlman and Danforth, 1991), the use of higher intensity exercise (>75% VO2peak) may have been needed in the current study in order to elicit a significant increase in RMR in the INT group. Exercise interventions in an overweight or obese population are often associated with high attrition and poor adherence rates (Dishman, 2001; Jakicic and Gallaher, 2003), with a 53% attrition rate being reported for an 8-week study where exercise was performed in a laboratory by obese participants (King et al., 2001). This compares to a 35% attrition rate (30% for the CON group and 40% for the INT group) in the current 12-week study, with adherence to exercise being 87.7% and 92.9% (NS) for the INT and the CON group, respectively. While these adherence rates are comparable to those reported in a similar 12-week exercise study by Murphy et al., (2002; 88.2 % and 91.3 for high and low intensity exercise, respectively), the lower attrition rates may have been due to the home-based nature of the intervention and /or the use of split exercise sessions, which afforded participants flexibility in performing their exercise. This greater freedom in performing exercise is important, as lack of time has been reported to be the most common reason given for discontinuing an exercise programme (Dishman, 2001). Nonetheless, we acknowledge that exercise compliance (intensity, frequency and duration) in a home-based programme is totally dependant upon the accurate reporting of these details by the participant, with this being a limitation to the current study. |