The main finding of the present study was the lack of difference in the Fatmax between the moderate and low performance groups, even though the Fatmax tended to be higher in the moderate group. However, when VO2max was used as a criterion for sharing the groups, the Fatmax values were significantly higher in high VO2max group. Another important finding was the lack of significant association between fat oxidation parameters and 10,000-m running performance. The Fatmax average obtained for both groups (0.36 g·min-1) was slightly lower than that reported in previous studies (Achten et al., 2002; 2003; González-Haro et al., 2007). These studies employed a cycle ergometer protocol, whereas, a treadmill incremental protocol was employed in the present investigation. To our knowledge, only one study compared the Fatmax during treadmill exercise with cycle ergometer exercise (Achten et al., 2003). The fat oxidation rate was significantly higher during treadmill exercise compared to cycling exercise over a wide intensity range. Unfortunately, the subjects in Achten’s et al. study (2003) performed an uphill walk instead of treadmill running, which could exclude comparisons with the results from our study. Nevertheless, it could be speculated that the energy expenditure is higher during running compared to walking or cycling, resulting in a greater contribution of carbohydrate oxidation and a lower fat oxidation. In the present study RER values at the Fatmax exceeded 0.85 units in all subjects, suggesting that carbohydrate oxidation was the major fuel at Fatmax intensity. When analyzed by groups, RER values showed a higher carbohydrate oxidation in the Fatmax intensity in moderate performance group. A higher fat oxidation rate during submaximal exercise in trained individuals has been observed (Nordby et al., 2006; Stisen et al., 2006). However, the training effects on the Fatmax and intensity that elicits the Fatmax is not evident (Achten and Jeukendrup, 2003; Nordby et al., 2006; Stisen et al., 2006). For instance, Nordby et al., 2006 found that the Fatmax occurred at higher relative workloads in trained subjects compared with untrained subjects, while Stisen et al., 2006 observed no differences in the Fatmax or intensity that elicits the Fatmax between trained and untrained women. Achten and Jeukendrup, 2003 also found no differences in the Fatmax intensity between individuals with high or low VO2max. In the present study, we found a higher Fatmax in high VO2max group when VO2max was used to determine the aerobic training status. However, the intensity that elicited the Fatmax was not different between groups. On the other hand, we observed no difference in the Fatmax or Fatmax intensity between moderate and low performance groups. It is worthy of note that there was a larger intra-individual variation in intensity that elicited Fatmax, as demonstrated by elevated standard deviation for both the groups. Nevertheless, the criterion used to determine the aerobic training status can affect the magnitude of differences on the Fatmax. Consequently, performance parameters should be cautiously employed when the training effects on the Fatmax are studied through data from transversal investigations. It should be noted that athletes selected for the present study cannot be considered as elite runners (Coetzer et al., 1983; Weston et al., 1999). In fact, Coetzer et al. (1993) and Weston et al., 1999 suggested that elite runners are able to run 10,000 m below 33 min. The faster group in the present study covered 10,000-m in 35.5 ±1.7 min. Therefore, we preferred to use the term “moderate performance” instead of “high performance” in order to characterize the faster group. However, the differences between the moderate and low performance groups, with regard to the time to cover 10,000-m, was about 6 min (p = 0.00001). This suggests that even though the moderate group was classified as better runners and had a better performance level than their counterparts in the low performance group they did not have a difference in Fatmax. The higher proportion of VO2max used during the run, not the fat oxidation parameters, was associated with 10,000- m running performance. These results could suggest that the performance during a 10,000-m run might depend on capacity to oxidize carbohydrates rapidly, since higher exercise intensities requires energy derived from carbohydrate fuel (Brooks and Mercier, 1994; Brooks and Trimmer, 1996). Previously, Bergman and Brooks, 1999 demonstrated that trained subjects were able to maintain a greater workload and energy expenditure at intensities around 59 and 75% VO2max and this greater mechanical power output was covered by an increased carbohydrate oxidation rate. Friedlander et al., 2007 showed that carbohydrates are the main fuel used by working muscle during exercise in moderate and high intensities, although endurance training increases the oxidation capacity for all substrates. However, as we did not measure carbohydrate oxidation during the run, this assumption remains unclear and questions arising from this require further investigation. Nevertheless, if athletes used more energy at an equal fat oxidation, it could suggest a greater carbohydrate oxidation. |