Research article - (2010)09, 382 - 387 |
Consistency in Acceleration Patterns of Football Players with Different Skill Levels |
Pinar Arpinar-Avsar1,, Abdullah Ruhi Soylu2 |
Key words: Accelerometry, soccer, repeatability, skill level |
Key Points |
|
|
|
Subjects |
Thirteen male, club-level soccer players between ages of 15-16 years (mean age: 15.28 ± 0.46 years; height: 1.76 ± 0.07 m ; weight: 64.00 ± 5.17 kg), participated in the study. Skill levels of the players were evaluated by their coach with a numerical value ranging from 1 to 10, regarding the effectiveness of their shooting performance during the trials. The study was conducted in agreement with guidelines and policies of the ethics committee of the Middle East Technical University. |
Data collection and preparations |
The players were asked to perform inside and instep kicks as powerful as possible using their preferred legs, to the center of the goal, which was located 11 meters in front of them. After warming up and a few prior test kicks, subjects completed four trials consisting of both types of kicks in random order, with resting intervals of 2 minutes between each trial. The Mean score of the trials for each subject was calculated for inside and instep kicks, to be used in statistical analysis. A standard (FIFA) soccer ball was used in all trials. A tri-axial accelerometer (TSD109C, ± 5g range, Biopac, USA) was attached to the proximal tibial tuberosity beneath the patella of the subjects’ knees where x, y and z axis correspond, respectively to lateral (form right to left), horizontal (from back to forward) and vertical (from up to down) directions of the subjects’ tibia ( |
Normalization procedures |
The normalization procedure for each axis of acceleration data consisted of three stages. In the first stage, the mean value of the first 100 ms of acceleration signal was subtracted from the whole signal, such that during the initial resting condition of the leg, the acceleration signal would be at zero, indicating no acceleration. Secondly, the whole signal was divided by a constant value according to the sensitivity characteristics of the accelerometer, to be able to represent the values in terms of Earth’s gravity (g). Finally, normalization along the time axis was performed by shifting data such that the maximum instants get overlapped. The resultant 4 by 1200 acceleration matrices (g vs. ms) corresponding to the 4 trials of each subject were used in consistency calculations. The acceleration signals obtained through the four trials are illustrated in |
Calculation of consistency and statistical analysis |
Mean of standard deviations (mSD) was used to evaluate the consistency of acceleration data. The equation ( mSD measures similarity of acceleration waveforms so that zero indicates exactly the same waveforms, corresponding to “no variability” or maximum consistency between the trials. If similarity decreases, mSD increases (corresponding to higher variability or lower repeatability). The logic behind mSD is the same as standard deviation (i.e., mSD is a logical extension of “SD of one channel signal” to “SD of multichannel signal”) and amplitude normalization (it is further divided by number of signal points, m-times-n and maximum amplitude of 1200-by-4 acceleration matrix signal, Eij ). The aim of the last amplitude normalization was to make the consistency measure (mSD) independent from the signal length, trial count, or the peak acceleration reached by the subject. Furthermore, similar to employing the maximum voluntary contraction for normalization procedures in surface electromyography (sEMG), this amplitude normalization in acceleration signals also makes each repeatability measure comparable between subjects. The mSD values were calculated for all axes of the acceleration signals (x, y and z). For similarity measures, although there exist other methods like variance ratio (Hershler and Milner, Pearson-r correlation coefficients were also calculated for mSD vs. skill correlation. Even if nonparametric Spearman-r values indicated slightly lower p-values, parametric Pearson-r values were preferred as it provided a worst case condition. To ensure optimal positioning of the accelerometer, three orthogonal acceleration signals were recorded and some vector rotations were reproduced. Instead of rotating acceleration signals for different possible angles and calculating correlation coefficients, the projections of 3D acceleration signals ([ax, ay, az]) on the unity vector were calculated for different unity 3D vectors [sin(Ф).cos(θ¸), sin(Ф).sin(θ¸), cos(Ф)] ( |
|
|
Pearson-r correlation coefficients calculated from ‘mSD vs. skill correlation’ for trials performed with instep and inside kicks for x, y and z acceleration signals are shown in |
|
|
A primary consideration in functional performance is the ability to successfully complete a specific motor task and perform it consistently (Granata, To the best of our knowledge, in the literature “skill vs. acceleration waveform repeatability” has not been investigated via accelerometry. But the articles on “archery skill vs. EMG repeatability” (Clarys et al., When considering these results, other important questions have also been examined: i) “if the accelerometer had been placed on the knee at a different angle, would the same results be found?” and ii) “what is the appropriate angle for the placement of the accelerometer on the knee to obtain higher correlation?” According to the findings presented in Therefore, the purpose of the present study has been established in two way: one is by comparing the consistency in the lower limb acceleration waveforms during inside and instep kicks and, the other is investigating the correlation between subjective rating scores on skill level and knee acceleration repeatability and by seeking a suitable method for optimal recording of that correlation. Although, there are other body parts involved in kicking action such as foot, knee was chosen in this study as its peak acceleration never exceeded +/- 5g. Another important point in the selection of the knee was also the possible displacement of the accelerometer during kicking due to very high accelerations which is likely to get unreliable recordings. To illustrate, in our preliminary measurements, the peak accelerations of the foot even exceeded ± 50g limit because of the saturation in acceleration signal when the foot contacts with the ball. |
|
|
This study elaborated on knee acceleration repeatability as a function of skill. It appears that the order of the repeatability decreases from a higher to lower score on subjects’ skill levels. It is well known that once subjects could produce accurate movements, muscle torques changed with further learning, however, with only slight change in joint kinematics (Young and Marteniuk, |
AUTHOR BIOGRAPHY |
|
REFERENCES |
|