In the past two decades, the world has experienced an increased prevalence of obesity, resulting in a global obesity epidemic. Nearly half a billion of the world’s population now considered to be overweight or obese (Chopra et al., 2002). A number of pathologic conditions and health risks are associated with being overweight or obese affecting both men and women among all racial and ethnic groups (Calle et al., 1999). Interrelations between low physical activity and the epidemiology of obesity and its effects on health are now clear (DiPietro, 1995). Regular physical activity has been shown to improve weight loss when combined with modifications in eating behaviors and is one of the best predictors of long-term weight loss maintenance (Jakicic et al., 2002). At present an energy deficit of 500-1000 kcal/day is recommended to induce proper weight loss (Jakicic et al., 2001). Thus, understanding and accurately assessing the energy expenditure of different types of physical activity is important for exercise prescription. Indirect calorimetry technique is regarded as the gold standard measure of EE for a structured bout of physical activity (Westerterp, 1999), but it cannot easily assess free-living subjects. Furthermore, the expense of the equipment and supplies, time needed in the laboratory and for subsequent analysis, burden for subjects, and significant amount of technical expertise required limit the use of this technique (Campbell et al. , 2002). Consequently, to provide simpler estimates, less expensive, smaller, more manageable objective EE assessment tools like motion sensors (accelerometers, pedometers) and heart rate monitors (HRM) have been developed. Motion sensors have been shown to be ineffective at predicting the energy cost of activities such as cycling, upper-body exercise, swimming, rowing, or walking/running up an incline (Fehling et al., 1999; Jakicic et al., 1999; King et al., 2004). Heart rate (HR) is a physiological parameter that can be used to detect changes in exercise intensity even when the movement patterns differ greatly. Thus, the HR monitor is able to estimate EE in activities such as rowing and cycling, which do not elicit vertical displacement of the trunk, where pedometers and accelerometers are less accurate (Jakicic et al., 1999; Campbell et al., 2002). Heart rate monitors also have limitations since they respond to a person’s emotions (such as anxiety) and increased body temperature. They also tend to lag momentarily behind changes in movement and remain elevated after the termination of the movement (Trost, 2007). Crouter et al., 2004 showed that in spite of its inherent limitations, HR monitoring (a Polar S410 HRM) can yield reasonable estimates of EE for exercise modes (treadmill, cycle, rowing ergometer exercises) where motion sensors (i.e., pedometers and accelerometers) often fail. Because Crouter et al., 2004 conducted the study in young, active, normal weight adults; accuracy of the HRM in overweight and obese adults is still questionable. During recent years, activity monitors that combine various physiological and movement parameters such as accelerometry and physiological parameters have been developed to increase the accuracy in assessing physical activity. One of these is the SenseWear Pro Armband (SWA) (BodyMedia Inc., Pittsburgh, PA, USA), which is worn on the right upper arm over the triceps muscle and combines data from a variety of parameters including heat flux, accelerometer, galvanic skin response, skin temperature, near-body temperature, and demographic characteristics including gender, age, height, and weight. Data registered by the SWA is converted into energy expenditure using the proprietary computer software, which uses activity-specific algorithms. SWA also provides estimates of intensity (MET-level), frequency and duration of physical activity. An advantage with SWA is its design, which allows individuals to wear the device without preventing them from participating in everyday activities and sport activities (Papazoglou et al., 2006). Previous studies in relatively young, normal-weight adults have reported that the SWA in combination with different software versions has shown to be highly reliable at estimating the energy expenditure of rest, but has provided less accurate estimates of energy expenditure when compared with IC during various exercise protocols (Fruin and Rankin, 2004; Jakicic et al., 2004; Papazoglou et al., 2006; Welk et al., 2004). In a previous study, SWA (with software version 4.0), has been validated in obese individuals, showing that accuracy of SWA was poor in three different exercise modes including cycle ergometry, stair stepping, and treadmill walking (Papazoglou et al., 2006). However, in many of the studies that found the SWA to have limited accuracy during several activities, it was also pointed that when applying enhanced software algorithms the SWA may have the potential to provide a feasible assessment of EE (Fruin and Rankin, 2004; Jakicic et al., 2004; Papazoglou et al., 2006; Welk et al., 2004). The new computer software “SenseWear Professional 6.1” therefore remains to be investigated. Rowing is a different exercise mode which has both a strength and an endurance component (Fagard, 2003) and could be an effective alternative activity (Hagerman et al., 1988) in exercise prescription for obese subjects, especially when the severe obesity impairs the ability to properly walk (Poirier and Despres, 2001). However, to our knowledge, there has been only one study, examining the validity of SWA during indoor rowing (Cole at al., 2004). The authors concluded in that study that when using software developed for the general population, the EE information should be interpreted cautiously during rowing exercise. Because the subjects of that study were normal weight adults (i.e. old, cardiac rehabilitation patients), it is unclear whether similar conclusion would be reached in relatively young and healthy, overweight and obese individuals. Therefore, the aim of the present study was to assess the ability of the Polar S810i HRM and SenseWear Pro Armband to accurately estimate the energy cost of various workloads of indoor rowing in overweight and obese individuals in a laboratory setting measured by simultaneous indirect calorimetry. |