This is the first study that aims to determine the influence of an eccentric training program on the repeated bout effect in young women. Contrary to our initial hypothesis, the main finding of this investigation indicates that the eccentric training program carried out here decreases the repeated bout effect when assessed with MVIC and peak power tests in young women. However, as we hypothesized, the eccentric training increased the repeated bout effect impact if assessed with muscle soreness. The present results suggest that, in young active women, eccentric training may prevent the repeated bout effect in adaptations related with the initial mechanical stress or muscle damage (e.g. strength loss), but, on the other hand, it may increase the repeated bout effect impact on the secondary damage, more related with the inflammatory response (e.g. soreness). These are important findings that increase the knowledge concerning the effects of eccentric training programs in women. The response of TG and CG to the MVIC after the first acute eccentric bout showed a decrease of ~20% just after finishing the bout and a progressive recovery thereafter. Jimenez- Jimenez and coworkers (2008) showed a similar strength loss after an acute eccentric bout of similar characteristics in old men. Despite the similar initial response, the MVIC loss developed by CG at 168 h was significantly greater than TG. A possible explanation could be a higher number of “high responders” (Hubal et al., 2007), although in a previous study the differences between high- and low- responders were seen only within the 48 h following the acute eccentric bout (Hubal et al., 2007). Perhaps more surprising were the different responses of CG and TG in MVIC after the second acute eccentric bout. Thus, after the second bout CG showed less strength losses and a faster recovery than after the first bout, possibly due to the repeated bout effect (Howatson et al., 2007; Nosaka et al., 2001; Skurvydas et al., 2011). However, the decrease in strength losses in CG immediately after the second acute eccentric bout may seem unusual since some investigations have shown that the repeated bout effect does not affect strength losses immediately after the bout (Nosaka et al., 2001; Paschalis et al., 2008). Nevertheless, a recent investigation (Skurvydas et al., 2011) reported that strength losses immediately after an eccentric bout with the leg extensor muscles was attenuated by 10% the second time the eccentric bout was performed, results supported by our data. Nosaka and coworkers (2001) and Paschalis and coworkers (2008) chose the elbow flexors and the knee flexors, respectively, for their protocols, while Skurvydas et al., 2011 and the present study analyzed the knee extensors. Thus, it is possible that differences may exist in the adaptative responses to the repeated bout effect when comparing different muscle groups or joint movements, something recently described for a single bout of eccentric exercise (Chen et al., 2011). The most novel and unexpected finding were the values presented by TG after the second acute eccentric bout. As mentioned above, our hypothesis was that the repeated bout effect manifestations would improve following eccentric training. Not only was this not fulfilled, but the eccentric training in young women also prevented the faster recovery of MVIC provided by the repeated bout effect. To our knowledge, this is the first investigation to describe this response, which will be discussed further. Peak power is a critical factor in muscular performance (Baker and Nance, 1999; Sleivert and Taingahue, 2004) and it has been established that it is reached with loads ranging from 50 to 70% of 1RM (Izquierdo et al., 2001; Thomas et al., 1996) using similar protocols as in this study. It has been demonstrated that humans present less peak power on a cycle ergometer after carrying out an eccentric exercise (Byrne and Eston, 2002). Moreover, a study with mice (Widrick and Baker, 2006) reported decreased power in an isolated muscle after an eccentric contraction series due to a loss in strength and a slower muscle shortening speed. In the present study, peak power decreased significantly from immediately post- exercise to 48 h after the eccentric bout in both groups after the first acute eccentric bout, and also at 168 h for TG. However, after the second acute eccentric bout peak power decreased only immediately after the exercise in both groups, although significant differences between the first and the second eccentric bouts emerged only for CG from 24 h to 168 h, i.e. recovering the peak power faster. The faster recovery of peak power after the second eccentric bout in CG may represent the repeated bout effect, although this effect was not evident in TG. Again, it seems that a short eccentric training program might avoid the repeated bout effect impact. These data also support that the repeated bout effect can be evaluated with a peak power test. Since losses in peak power can be due to a decrease in strength or to a slower muscle fiber shortening speed (Widrick and Baker, 2006), a deeper analysis of both parameters is needed to understand the mechanisms that determine the loss in peak power after an acute eccentric exercise. Considering TG results of MVIC and peak power, it could be proposed that certain eccentric training protocols would prevent the adaptations given by consecutive eccentric exercise bouts over the exercise-induced muscle damage in females. Some investigations (Hubal et al., 2007; Sewright et al., 2008) have shown that women suffer greater muscle damage after eccentric exercise. This greater damage may also influence the adaptation process and the recovery after an acute eccentric bout and the response of women to eccentric training. Since the results of this study differ from those carried out in men (Garcia-Lopez et al., 2007; Jimenez-Jimenez et al., 2008), investigations comparing eccentric training and its adaptative responses between genders are needed to clarify the possible differences. A recent study by Falvo et al., 2009 showed that resistance trained subjects did not present a repeated bout effect for MVIC, but they did for self-assessed muscle soreness. According to the ideas proposed by the authors of that study, the training protocol used in the present investigation may have generated neural adaptations responsible for the absence of the repeated bout effect (Falvo et al., 2009), considering that TG and CG participants had similar physical-activity background. However, the light load employed for the training program would make these adaptations difficult to appear. Another hypothesis that may help to explain our results is suggested by Choi and Widrick, 2009. They concluded that fatigue may reduce the long-term power and force losses associated with lengthening contractions. According to this hypothesis, TG may have developed less fatigue during the second acute eccentric bout due to the training that they followed. Thus, the muscle fibers would have been more susceptible to suffering from the muscle damage generated by the second acute bout. On the other hand, fatigue would have worked as a protection mechanism in CG, losing less MVIC and peak power after the second acute eccentric bout. Studies with male participants (Howatson et al., 2007; Lavender and Nosaka, 2008) show that ROM decreases after an acute bout of eccentric exercise, presenting lower losses the second time the acute bout is performed. This is commonly explained by the repeated bout effect. In the present study only the group of women that followed the eccentric training program presented a significant decrease in ROM losses after the second acute eccentric bout when compared with the first one (immediately and 24 h after the bout). Apart from a possible training effect, it should also be considered that perhaps the loaded ROM assesses this variable in a different way compared with active or passive ROM. Therefore, research comparing different methods to assess ROM is warranted. Soreness assessment is one of the most utilized indirect methods to evaluate exercise-induced muscle damage (Warren et al., 1999). TG and CG soreness values after the first acute eccentric bout followed the pattern already described in men by other authors (Howatson et al., 2007; Paschalis et al., 2008; Vissing et al., 2008), presenting significantly higher values than baseline from immediately to 72 h after the first bout, which would confirm the idea that soreness is similar for men and women after an acute eccentric bout (MacIntyre et al., 2000; Dannecker et al., 2005). When the acute bout is performed the second time by men, soreness tends to be lower which is commonly explained by the repeated bout effect (Garcia-Lopez et al., 2007). CG showed a similar trend, but significant differences between the first and the second eccentric bouts were only found 6 h after the bout, reporting less soreness on the second bout. However, TG showed significantly less soreness after the second acute eccentric bout when compared with the first one. This response points out that the training program followed by TG had a protective effect over muscle soreness, since the repeated bout effect alone did not lower soreness in CG. Paschalis et al., 2008 reported a repeated bout effect in soreness results for females, but methodological discrepancies between Paschalis et al., 2008 and the present investigation (isokinetic vs. varying speed eccentric actions, respectively) may partly explain the different results obtained. The hypothesis that soreness is an indicator of inflammation (Smith et al., 1991), which would represent a secondary cascade of tissue damage, while strength losses would represent primary muscle fiber damage or initial mechanical stress has been defended in recent works (Chen et al., 2009; Parr et al., 2009). This would suggest that the adaptation processes are different between the skeletal muscle fibers and the extracellular matrix (Chen et al., 2009). Thus, the eccentric training protocol herein carried out may have induced different adaptations between the muscle fiber damage and the inflammation processes, preventing the adaptations associated with muscle fiber damage (losses in MVIC) and increasing the adaptations related with inflammation (less soreness). We speculate that this could explain the different patterns of MVIC and soreness in TG after the second acute eccentric bout. However, it should be taken into account that results from this study must be analyzed with caution since the response of TG and CG was not completely similar (although not significantly different between groups) after the first acute eccentric bout. This may represent a confounding factor when making inferences about the subsequent interventions carried out in this investigation. |