The aims of this study were 1) to provide data for vertical ground reaction forces (vGRF) during alpine skiing measured by pressure insoles (PI) and portable force plates (FP) as a reference for further scientific studies, and 2) to analyze whether the differences in the vGRF measured by the PI and the FP depend on a skier’s level, skiing mode and pitch. The main findings of this study were that the vGRF measured by the FP are generally greater than the PI. However, during the short term of the edge changing phase in some skiing modes, the vGRF determined by the PI is greater than the FP. These findings are similar to and coincided with the previous study by Stricker et al., 2010. Technically seen, the two systems differ in the location of system placement and the different measurement principle. From a sport scientific perspective, changes in skiing mode, pitch and different skier’s levels are also influencing factors on the variances in the vGRFs of the PI and the FP. The next two sections explain the differences in the two measurement systems from a technical perspective. One considerable difference is system placement. PIs are placed inside the ski boots, in additional to or in place of normal insoles, while FPs are placed between the skis and the bindings. As a result of their placement, FPs are able to measure the forces acting between the ski and the bindings, and therefore, to measure the force acting on the ski boot. In contrast, the PIs only are able to measure the vGRF beneath the skier’s foot, which is inside the boot. As presented in previous literature (Lüthi et al., 2005; Kersting et al., 2009; Scheiber et al., 2010; Stricker et al., 2010), a percentage of the total vGRF is transferred via the ski boot shank, and consequently, cannot be measured by the PI system. Referring to the laboratory study by Barnett, et al. (2000), forces measured by the PI were found to be smaller than those determined by a non-portable force plate (Kistler Instruments, Hampshire, UK) placed in the laboratory floor resulting in a difference of 3 to 31 % with four different types of shoes. In our study, the mean relative differences of the outside and the inside phases ranged from 22.6 to 35.2 % (Table 2) and the relative differences of vGRFmax and vGRFmin forces ranged from 29.3 to 42.8 %. These differences are greater than those in Barnett’s study. One explanation for the differences between the two studies is that the shoes which were used in the Barnett study did not have the part above the ankle; therefore, they did not have supporting ankle stabilization function like ski boots have. Consequently, the forces transferred via the shank are smaller than in ski boots. In alpine skiing, tibia shank forces of 0.11 to 0.16 N/BW were found by Scheiber et al., 2010. Additionally, these authors reported a relationship among skiing styles, skiers’ levels and the shank forces. The measurement principles of the sensors contained in both systems are fundamentally different. The portable FP system produced by Kistler contained rigid piezoelectric sensors inside of the plates (Bill, 2002), while the PI system used capacitive sensors covered by a soft protection layer (Barnett et al., 2000). The PI system is able to determine compressive forces by multiplying the pressure value with the area of each sensor. However, each pressure sensor has a minimum threshold of 20 kPa; consequently, pressure values lower than 2 N/cm2 are eliminated. In contrast, the piezoelectric sensors are able to measure these small forces, and moreover, the negative force as a negative value. In the current study, these small negative values of FP-forces were observed in the individual data analysis, but they disappeared when the mean values of groups were calculated. As a result, such small values cannot be found in the figure 6a-h. From a biomechanical perspective, the reasons why skiers’ levels, certain turn phases, different skiing modes and pitches had significant effects on the differences are stated below. According to the studies by Müller and Schwameder, 2003 and Schiefermüller et al., 2005, a skier’s center of gravity during skidded turns (low dynamic skiing mode) was found to be located nearly above or slightly forward (in anterior) to a skier’s ankle joint (average value during a turn). In contrast, a skier’s center of gravity in carved turns (high dynamic skiing mode) was located behind (posterior) the ankle joint. These findings are in agreement with the recommendation by the Austria Ski Teaching Concept (Wörndle et al., 2011). Additionally, the range of motion, as determined by the anterior-posterior movement of the center of gravity, is typically greater in skidded turns compared to carved turns. As a result, skiers may lean more on the boot shaft; hence, the support function of the ski boot may be greater in skidded turns compared to carved turns. Consequently, the force acting on the shank could be increased, resulting in an increased difference between the forces determined by the PI and the FP system. It is not the relative, but the absolute time of steering phase in the low dynamic (skidded) skiing mode that is typically longer compared to the high dynamic (carved) skiing mode (Müller and Schwameder, 2003). The longer steering phases are needed for the drifted turning of the skis (Wörndle et al., 2011). Within this time period, skiers move in anterior direction (initial phase) and posterior direction (steering phase), which again results in increased forces transmitted via the boot shaft. There is no doubt that skiing with carved turns requires better sagittal plane balance abilities; skiers tend to keep the center of gravity in a middle position to be able to act and react to external disturbances (Müller and Schwameder, 2003; Schiefermüller et al., 2005; Wörndle et al., 2011). These middle positions potentially reduce the shank forces. In this study, the subjects were allowed to use their own ski boots, instead of providing standardized boots. However, the flex index of each boot was recorded regarding to the flex information provided from the boot manufacturer. The mean value of flex index units in expert group was 123.0 ± 18.0 and 92.2 ± 18.6 in intermediate group. The flex index units of the different companies may be seen more as an indicator, than as total numbers. However, the fact the intermediate level skiers used softer boots than the expert level skiers may be another explanation of the interaction between systems and skiers’ levels because stiffer boots potentially result in greater shank forces. During the edge changing phase, the vGRFmin determined by the FP were smaller than the PI forces. These differences were tended to be greater in the high versus low dynamic skiing mode and on steep versus flat pitches (Table 2). When skiers performed a high dynamic skiing mode, or ski on a steep pitch, they needed to use a more dynamic unloading movement compared to a low dynamic skiing mode or skiing on a flat pitch. These dynamic unloading movements led to negative vertical force (skis are lifted) measured by the FP, which was observed in the individual analyses of the force-time characteristic. However, these low negative forces, in particular, cannot be measured by the PI system, as reported above. According to the vGRFmin force values from the edge changing phase (Table 1), the force around 0.23 N/BW could be seen as a minimum cut-off point of the pressure insole system during alpine skiing. |