The main findings of the present investigation were that stretching decreased performance by lowering PP whereas TP increased. Many studies have been conducted investigating the effects of stretching on the performance of recreational sports and athletes due to changes in muscular capacity, which can be evaluated by means of different muscle performance variables. From these variables, strength has been widely investigated, whereas little attention has been given to endurance (Franco et al., 2008) and power (Marek et al., 2005; Yamaguchi and Ishii, 2005). The latter depends not only on force generated by the muscle, but also on the speed of muscular contraction. In addition, few studies have attempted to investigate the effect that the type of stretching exercise has on performance, (Marek et al., 2005; Yamaguchi and Ishii, 2005). In the present study, the influence of stretching exercises on lower body power through three parameters (MP, PP, and TP) of WT was addressed and some effects were found. Alternatively, several studies have demonstrated that relatively longer stretching interventions result in acute reductions in performance, with an associated decrease in the neural input to the muscle (Avela, et al., 1999; 2004; Fowles et al., 2000). A recent investigation proposed these effects would depend on the number of sets, stretching duration, and type of stretching (Franco et al., 2008). Negative effects of static stretching has been observed such as a reduction in strength (Behm et al., 2004; Evetovich et al., 2003; Kokkonen et al., 1998) and the height of a vertical jump (Church et al., 2001; Cornwell et al., 2001 ; Young and Behm, 2003). Ramirez et al., 2007 compared two performances of WT, one test following a static stretching exercise and the other following a conventional cycle warm up, and found a decrease in PP and MP when comparing stretching with a conventional warm up. Conversely, in the present study, only PNF reduced PP, when compared with NS. The static procedure did not reduce PP when compared to NS and the decrease was only seen when compared with DS, which is similar to the findings reported by Ramirez et al., 2007, who found reduced PP after SS when compared to DS. O'Connor et al., 2006 evaluated the effects of stretching on an adapted Wingate test, or the WT for 10 s (Akimoto et al., 2000; Odland et al., 1997). The participants performed the modified WT after 5, 20, 40, or 60 minutes following one of two different warm up protocols: one consisting of a conventional cycle warm-up and another comprising of static stretching exercise for the involved muscles. They found greater results for MP and PP when the stretching was performed. These findings are not in agreement with the results from the present study, nor with the results from Ramirez et al., 2007. Perhaps, the use of a specific warm-up by the authors (O'Connor et al., 2006) before performing the stretching intervention had the potential effect of improving the results rather than the stretching protocol itself. Unfortunately, not many Wingate stretching studies are found in the literature to compare with the present investigation. Therefore, a comparison of our findings with related studies using single movement power tests may be appropriate. Church et al., 2001 investigated the acute effect of SS on vertical jump performance and reported no significant difference on height, when static stretching was compared to no stretching. Yamaguchi and Ishii, 2005 compared the power output on a leg press performed after static stretching and dynamic stretching aimed for the quadriceps, hamstrings, gluteus, and calf muscles. The stretching exercises comprised of one set of five stretches for 30 s each, while the dynamic stretching comprised of five slow and 10 fast repetitions of the same stretches. The authors found an improvement of power output with dynamic stretching. However, no significant differences for static stretching exercises were reported. In a different approach, Yamaguchi et al., 2007 examined the power output of the knee extensors after dynamic stretching at three different intensities; 5%, 30%, and 60% of MVC, and found higher power output for all intensities when dynamic stretching was performed compared to no stretching. In the present study, when speed was the goal with a fixed load, and a very similar dynamic stretching intervention was performed, comparable results were found. However, differently from Yamaguchi et al., 2007, although the dynamic exercises were found to be more efficient than the other stretching exercises, it was not more efficient than no stretching. The hypothesis for such a divergence is that the present study required maximal instead of sub maximal effort. In addition, after previous contractile activities, a transient improvement in muscular performance has been shown to occur termed postactivation potentiation (PAP) (Robbins, 2005; Sale, 2002). The principal mechanism of PAP is the phosphorylation of myosin regulatory light chains, which renders the actin-myosin interaction to be more sensitive to Ca2+ released from the sarcoplasmic reticulum. Increased sensitivity to Ca2+ has the greatest effect at low myoplasmic levels of Ca2+, improving muscular performance (Robbins, 2005; Sale, 2002). Regarding PNF stretching, the studies that investigated its effects on strength (Marek et al., 2005), vertical jump height (Church et al., 2001), and endurance (Franco et al., 2008), showed the effects on these variables to be negative. For instance, Marek et al., 2005 compared static stretching with PNF during isokinetic leg extension, and found a decrease in the peak torque and mean power output in both types of stretching when compared with no stretching. This was also observed in the present study, as PNF presented the most divergent results. The theory of autogenic and reciprocal inhibition has been used to explain the larger range of motion gained by PNF when compared to other methods (Chalmers, 2004) and has been reported elsewhere as the probable reason for the decrease in endurance, as this is somehow associated to the decrease in force (Franco et al., 2008). Also, the lengths of the fascicles can lead to a change in length-tension muscle curve, which would shift the optimum range of length for force generation, and as a consequence, bring the muscle to work in a range of a reduced ability to generate force (Cramer et al., 2007). This means that as PNF reaches higher muscle stretching it imposes the higher reduction in force. However, as this study is regarded more to physiological rather than mechanical outputs, the loss of force alone could not fully explain the decrease in performance, and thus new approaches should be addressed to explain such high differences found. One could speculate that some other mechanical factors may mediate the decrease of such muscle performance, such as changes in the elastic properties of muscular structures and a decrease in muscle-tendinous stiffness, previously reported by Magnusson et al., 1996, which somehow has an influence on the physiological requirements for power production One important finding in the present study is the difference observed in TP between the no stretching and the stretching conditions, except in the DS condition. The TP is the time from the start of the test until peak power is reached. The lowest value of TP was found with no stretching. Although this variable is rarely quantified in the standard use of the Wingate test, one might speculate when performing sports that need explosive power, the use of SS, or PNF, and DS could delay this peak, probably reducing velocity and consequently negatively affecting performance. The WT is a maximum anaerobic test, such that not only force but also velocity is essential to obtain maximal performance. Thus, as the power depends on force and speed, the changing in this power kinetics might be related to any modification in the length-tension relationship for high speeds due to the successive stretching procedures applied, which may alter the viscoelastic properties of the muscle. O'Connor et al., 2006 also found a decrease in TP in the adapted WT10s, when comparing static stretching with no stretching. However, as previously suggested, the major source of such a finding might be most likely due to the specific warm up procedure employed before static stretching exercises and not due to the stretching itself. |