It has recently been estimated that over eight million sports injuries are medically treated each year in Europe (Bauer and Steiner, 2009). Focusing on European elite football players, Ekstrand et al., 2011 found that, on average, players suffered two injuries per season. Drawer and Fuller, 2002 proposed an injury cost framework based on English elite football clubs. They suggested that the cost impact for a club sustaining several injuries could not only be measured in medical expenses though injury rates, but also, it strongly correlated with team quality, team-performance, club- turnovers and club salaries, which, for the clubs, will mean a loss in income of millions of euros every year. In addition a wealth of evidence indicates that a sport injury can be an extremely stressful and disruptive event for elite athletes, particularly in cases where the injury is severe and the athlete is heavily invested in sport (Brewer, 2007). Therefore, it is important to find preventive actions, combining well-established psychological and physiological techniques. Research that has examined the influences of psychological factors on injury risk has stated that athletes who experience high levels of stress are exposed to a greater risk of attaining a sport injury (Ivarsson and Johnson, 2010; Rogers and Landers, 2005). One of the most influential psychological models in this area is Williams and Andersen's theoretical “stress - injury model” (1998). The core of the model consists of three parts, where (1) a potential stressful event, which could originate from both inside and outside of the sport context, (2) might affect an athlete's stress response which, in turn, (3) could influence injury risk. An athlete's appraisal of the potential stressful event could be discussed as the mediating link that will decide the size of the stress response that might occur, which could lead to both behavioural and cognitive consequences (such as distractibility, narrowing of visual field and increased muscle tension). The stress injury model also suggests that there are three categories of psychological factors that will influence an athlete's appraisal of the situation. These categories are personality (e.g. competitive state anxiety), history of stressful events (e.g. negative life event stress) and coping (e.g. social support) (Rogers and Landers, 2005; Williams and Andersen, 1998). A few studies have tested parts of the Williams and Andersen model in elite soccer populations. For example both Johnson and Ivarsson, 2011 and Ivarsson et al., 2012 found that both personality (e.g. anxiety) and stress (e.g., negative life event stress and hassle) variables predicted sport injuries. More specific Ivarsson et al., 2012 suggested a path model that could explain 24 % of the variance of injuries. In the model trait anxiety and negative life event stress have an indirect effect on injury frequency through the variable daily hassle. Based on the findings in studies aimed to investigate psychological injury prediction factors, a number of preventive intervention studies have been conducted. For example, several stress management programmes based on cognitive-behavioural training have been shown to effectively reduce the numbers of injuries among athletes (Johnson et al., 2005; Noh et al., 2007; Perna et al., 2003). Perna et al., 2003 discovered that athletes in the experimental group, taking part in an intervention programme containing: relaxation, visualisation, cognitive restructuring and emotional relief, reported significantly fewer injury and illness days than the control group. Johnson et al., 2005 conducted a further intervention study which included a population of at-injury risk football players that participated in a psychology-based counselling programme. The results showed that the experimental group experienced significantly less injuries compared with the control group. Similar findings were found in a population of dancers (Noh et al., 2007) and rugby players (Maddison and Prapavessis, 2005). A common theme among these intervention studies is the focus on strengthening the individual's coping resources. Junge, 2000 recommended that preventive intervention programmes should focus on strengthening coping (coping skills, health behaviour and social support) and also situational dependent emotional states (fatigue, general well-being and competitive anxiety). Even though an increasing number of intervention programmes with solid methodological framework have been developed, with the focus of strengthening an athlete's coping skills and emotional states, only a few have used biofeedback training as part of the injury prevention programme (De Witt, 1980; Maddison and Prapavessis, 2007). Biofeedback is a method that makes the body's physiological signals visible (e.g. finger temperature, heart rate variability), with the aim of teaching individuals how to manage these physiological responses (Tenenbaum et al., 2002). Direct bodily feedback can motivate athletes to implement relaxation programmes while enhancing a sense of control over their behaviour (Johnson, 2007; Tenenbaum, et al., 2002). Biofeedback training can also help athletes getting into a state of homeostasis (Strack and Gevirtz, 2011) which is a state of emotional and physiological coherence similar to the “adaptive stress response” that decreases the risk of sustaining injury (Williams and Andersen, 1998). Intervention studies based on biofeedback in sports have mostly been focused on performance enhancement and anxiety reducing effects (see, for example, Blumenstein et al., 1997; Bar-Eli and Blumenstein, 2004a; Bar-Eli et al., 2002). The cognitive-behavioural-inspired biofeedback model “The Wingate five-step approach”, where athletes first learn stress management techniques and then gradually move closer to the stressful events, building up a resistance to stress, has been used in research and has helped athletes to handle their responses to stress (Blumenstein et al., 2002; Blumenstein, et al., 1997). De Witt, 1980 has conducted, to the best of the authors' knowledge, the only biofeedback intervention where injury occurrence has been observed. The intervention consisted of cognitive training together with the use of EMG and heart rate biofeedback. In addition to performance-enhancing effects and greater arousal control, a reduction of sports injuries after the intervention, was observed. The technical development of biofeedback products has made the equipment more affordable and user-friendly, which, in turn, has enabled new methodology approaches (Amon and Campbell, 2008; McCraty, 2005). Injury prevention research has rarely examined or used any biofeedback approaches, resulting in an absence of applied biofeedback interventions in the field (Johnson, 2007; Maddison and Prapavessis, 2007; Williams and Andersen, 2007). Stress responses could contribute to an increased risk of sustaining injury (Williams and Andersen, 1998), and biofeedback training is a way of learning to control stress response (Bar-Eli and Blumenstein, 2004a). Consequently, it is important to investigate whether an intervention consisting of sport psychology counselling and biofeedback methods can reduce the risk of sports injuries in young football players in Swedish elite football high schools. The purpose of this study is to examine whether a cognitive-behavioural biofeedback intervention reduces the occurrence of sports injuries for football players in Swedish elite football high schools. |