The goal of this study was to investigate the efficacy of ingesting a CHO-protein GEL on alpine slalom race training quality and quantity under high intensity training conditions. Based on the number of DNF’s and the number of gates completed, skiers improved performance and training quality and quantity when they ingested a CHO + protein GEL during their 2-hr slalom training bout. These high level junior ski racers mimicked an average slalom training session at high intensities for about five minutes in total over the two hour training period each day. It is well established that nutrient ingestion may improve endurance exercise performance, but the finding that supplementation can improve high intensity; short duration performance is relatively new, especially in a complex activity such as alpine slalom racing. Interestingly, no differences were observed between the GEL and PLA groups in single run finish time. However, the PLA group did not finish enough post training timed runs to use combined times for statistical analysis. Slalom racing is a complex movement activity where any loss of time can result in the loss of a race, placing far down the list, or not finishing the run (Seifert et al., 2009). One can only speculate as to why training quantity and finishing performance was improved for the GEL group during this intermittent activity. Ingesting the GEL may have maintained the neurological recruitment patterns of muscle during the runs, minimized muscle metabolism disruption, or delayed the change in the frequency spectra with the onset of acute fatigue (Kröll et al., 2010). Acute fatigue can be manifested through two primary paths, peripheral and central. Peripheral fatigue occurs when there is a reduction in the force generating capacity of the muscle (Gandevia, 2001; Taylor and Gandevia, 2008) whereas central fatigue is observed when there is a neurological reduction in muscle activation (Tomazin et al., 2008; Gandevia, 2001; Rattey et al., 2007). In complex movement activities, such as alpine slalom racing, crossover between the peripheral and central fatigue factors may occur, but this crossover phenomenon appears to occur primarily in the lower limbs (Rattey et al., 2007). Tomazin et al., 2008 reported that high frequency fatigue occurred after only one run through a 45 gate slalom course. These authors defined high frequency fatigue as a change in the generation, delivery, or sarcolemmal processing of the action potential. Tomazin et al. ’s (2008) results point to central fatigue as an important component in fatigue during high intensity slalom racing. There appears to be a significant interaction between central and peripheral fatigue, however. McLean and Samorezov, 2009 reported that changes in muscle metabolism altered the sensitivity of the central motor drive involving the alpha motor neurons and Group III and IV afferent neurons. With minute changes in muscle metabolism, there is the possibility of altered motor control during the activity. In ski racing, for example, there may be a loss in precise motor control of the foot and ankle thereby diminishing the pressure adjustments to the ski edge or loss of edge control. There may be slower reaction/response time to an undesired movement, or greater hip or knee extension in the turning phase. Any such change in body position would then have a negative impact on force production, slowing of response time, maintaining balance, or regaining lost balance (Twist et al., 2008). If metabolic homeostasis can be maintained with nutrient ingestion, muscle and central nervous system functions can be sustained during high intensity work. This is certainly plausible since Gant et al., 2010 reported that CHO ingestion facilitates corticomotor outputs to both fatigued and unfatigued muscle. Providing nutrient supplementation during exercise appears to be an important component in minimizing muscle stress and improving output. In previous work with recreational skiers, Seifert et al., 2005 reported significant differences in creatine kinase and myoglobin concentrations when skiers ingested a CHO-protein sports drink during three hours of free skiing. Those authors reported that creatine kinase and myoglobin concentrations remained unchanged from baseline and were significantly less when the CHO-protein sports drink was ingested compared to a water placebo, which was also lower than the no fluid ingesting group. The skiers in the sports drink group also maintained the number of runs during the final hour of skiing (3.8 runs) compared to the no fluid group who experienced a significant decrease in the number of runs during the final hour of skiing completing an average of 2.9 runs. It is also possible that the carbohydrates and amino acids provided by the GEL may have aided in the delay of central fatigue. Blomstrand, 2006 reported that amino acid ingestion reduced central fatigue following endurance exercise. The presumed mechanism is that 5-hydroxytrytophan (5-HT) levels are attenuated by amino acid ingestion. It is thought that brain 5-HT levels may play a role in fatigue during and after training. This explanation may be plausible as Tomazin et al., 2008 noted that acute fatigue during slalom training was probably centrally located. Training volume, measured by the number of untimed runs and training quantity (number of gates completed), was maintained at 2.3 runs/day/racer (a group total of 28 runs/day) from Day 1 to Day 2 by the GEL group in the present study. Training volume, however, decreased significantly for PLA group. The PLA group experienced a significant decrease from an average of 2.5 training runs/day/racer (a group total of 30 runs/day) on Day 1 to an average of 2.0 runs/racer (total of 24/day) on Day 2. The change in the number of training runs for PLA happened to also coincide with a significant difference between groups in RPE. This decrease in training run numbers on Day 2 may also be indicative of residual fatigue from Day 1. A possible confounding variable to the results may be nutrition recommendations given to the skiers. They were instructed to maintain their typical dietary habits during the study. There may have been perturbations in their dietary intake. One of the goals of this study was to allow the skiers to maintain their normal behaviors during the training as this is what happens in real life training situations. When asked, skiers did indicate verbally that they followed their usual dietary patterns on the training days. It can be argued that racers in the PLA group were going faster in the runs in which they recorded a DNF, which, in theory, could help their racing. However, there are sections within a course where racers must demonstrate a strategy in order to finish the course to gain a second run or record a finishing result. Skiing fast, but being unable to complete the course has little merit in racing. When fluid homeostasis is not an issue, the CHO-protein GEL allowed racers to not only maintain their training quantity, but to improve their training quality while their perception of effort was less than when skiers ingested a PLA. Future research in this area may be needed to separate the influence of substrate availability on central and peripheral factors. Although the racers used in this study were top level junior racers, they were young and skied technically at the junior level. How older, more technically developed racers would respond to an intervention is unknown. Future research should include the developed racer who is at the national/international level. |