The purpose of this study was to analyze the influence of two different RI (1 and 3 minutes), between sets, on number of repetitions, sustainability of repetitions, and total volume during a leg press exercise performed by resistance-trained older women. The results show that neither RI was sufficient to maintain the number of repetitions in relation to the first set (Table 1). However, greater sustainability of number of repetitions was observed for RI-3 in comparison to RI-1 (Figure 1), leading to a significant difference in total volume (Figure 2). It has been established that resistance training with moderate to heavy loads and different movement speeds leads to increases in muscle strength and functional performance (Gurjão et al., 2012; Tschopp et al., 2011). Additionally, it has been shown that training protocols involving low to moderate loads and higher number of repetitions are effective for increasing muscle size, oxidative capacity, mitochondrial volume density, and muscle strength (Harris et al., 2004; Jubrias et al., 2001). Harris et al., 2004, for example, performed resistance training protocols with different intensities, but similar volumes (2 x 15 RM, 3 x 9 RM, 4 x 6 RM), in the older adults. These authors reported no significant difference in increases in muscle strength between protocols after 18 weeks of training. In this context, training protocols designed to increase local muscular endurance can be a strategy for variation (or periodization) in order to help older adults improve their performance of daily living activities (e.g., submaximal work and recreational activities) (Chodzko-Zajko et al., 2009; Kraemer and Ratamess, 2004). Systematic literature reviews indicate that the performance of multiple sets is the most effective method for developing muscular strength in resistance-trained individuals (Peterson et al. , 2005; Rhea et al., 2002). When multiple sets are performed to voluntary exhaustion, with the maintenance of a constant load throughout all sets, the RI plays a key role in the performance of subsequent sets and in total volume (García-López et al., 2008; Miranda et al., 2007; 2009; Rahimi, 2005; Senna et al., 2008; Willardson and Burkett, 2006a; 2006b). The findings of this study are consistent with those reported in previous studies involving young and older adults performing single exercises. Willardson and Burkett, 2006b demonstrated that longer RI result in greater sustainability of number of repetitions, as compared to shorter RI. For a 1-minute RI during the squat exercise (between five sets of 15 RM), the authors found a decrease of approximately 50% in number of repetitions from the first to the third set. In resistance-trained older women, Jambassi Filho et al., 2010 compared the effect of two RI, 1.5 minutes (RI-1.5) and 3 minutes (RI-3), on muscle performance during an arm curl exercise (three sets of 10-12 RM). The number of repetitions showed a greater decrease from the first to the third sets in RI-1.5, as compared to RI-3 (49.5% vs. 29.7%, respectively). In addition, the total volume accrued in the experimental session with RI-1.5 was significantly lower than for the RI-3. In accordance with recommendations for older adults (Chodzko- Zajko et al., 2009), a RI of 1-3 minutes can be used to improve strength and hypertrophy. However, the differences between RI-1 and RI-3, which were observed in the number of repetitions, sustainability of repetitions, and total volume, should be considered in the design of a resistance training program. When considering long-term resistance training, the performance of sets until voluntary exhaustion has a marked influence upon the muscular environment, and provides an important metabolic stimulus for neuromuscular adaptations (Crewther et al., 2006). In this condition, the use of shorter RI between sets, practiced to failure, as compared to those with longer RI, can increase the metabolic stimulus. On the other hand, longer RI can improve the mechanical stimulus to resistance training adaptations by increasing the time under tension, yet without modifying load training. In association with other variables (e.g., magnitude of muscle tension and fatigue-related metabolites), time under tension is an important variable for the development of strength and hypertrophy (Drinkwater et al., 2005; Fry, 2004). In the present investigation, the RI-3 allowed for a greater total time under tension (28.3%; Table 1) as a consequence of increased number of repetitions in subsequent sets (total volume) (Machado et al., 2011). Machado et al., 2011 indicated that a higher volume is the primary determinant of muscle damage in resistance-trained individuals, which can provide higher acute neuromuscular responses. It has been suggested that older adults have a higher metabolic economy than their younger counterparts and a preference for oxidative pathways (Kent-Braun, 2009). However a lower RI may generate a greater accumulation of different ions (e.g., H+ Na+, K+, Ca2+ Mg2+, Cl-), resulting in a decrease in intracellular pH and a maximal velocity of cellular shortening (De Salles et al., 2009). The lower sustainability of repetitions observed in RI-1 may be associated with higher fatigue levels (Ratamess et al., 2007). A significant increase in the DS/NR relationship was observed only for RI-1, indicating an increase in the average duration of each repetition. However, this measure does not distinguish the point at which the repetition velocity is significantly reduced within the set. García-López et al., 2008 showed that RI-1 was insufficient to maintain the average repetition velocity during subsequent sets in a resistance training exercise. No significant changes were seen in RI-3. A limitation of our study was the use of a single exercise in the experimental design. In older adults, a resistance training program with multiple exercises (major muscle groups) is recommended in order to provide an overall conditioning stimulus (Chodzko-Zajko et al., 2009). However, a single exercise can be used to assess the effects of resistance training on muscle performance (Izquierdo et al., 2009), while avoiding the effects of the order of multiple exercises on number of repetitions (Miranda et al., 2010). Recently, Miranda et al., 2010 demonstrated that a smaller number of repetitions is obtained when the exercise is performed at the end of, rather than at the onset of, a session. In addition, the effect of exercise order on number of repetitions was stronger when compared with RI. The leg press is an exercise that is commonly prescribed in resistance training programs for older adults. In order to attend to the general principles of progression, the proper manipulation of different resistance training program variables is necessary (Kraemer and Ratamess, 2004). In resistance-trained older women, the length of the RI may be used as a strategy for increasing the total volume, without modifying load training or number of sets. Additionally, the RI can easily be changed by practitioners to provide higher acute neuromuscular responses. Future studies are needed to analyze the effects of multiple exercises and different intensities, and to determine the mechanisms associated with a decrease in muscle performance during the use of different RI, between sets. |