Determining the optimal prerequisites to achieve peak performance is the primary goal of most athletes and coaches. Among them, previous research consistently demonstrated that inducing an external focus of attention by directing athletes’ attention to the effects of their movements on the environment is more effective that providing instructions on the movement per se, which rather induces an internal attentional focus (Porter et al., 2010; Wulf and Prinz, 2001; Wulf et al., 1998). Such beneficial effects were reported in various motor skills, including those requiring movement precision such as basketball shot and volley-ball serve accuracy, as well as soccer shot precision (Al-Abood et al., 2002; Wulf et al., 2002). The external focus advantage was mainly explained in reference to the common-coding theory (Prinz, 1990), stating that actions are more effective when they are planned in terms of intended movements effects, as well as the constraint action hypothesis (Wulf et al., 2001) supporting that the external focus promotes an automatic mode of movement control. Interestingly, Wulf (2007, p. 12) argued that “not only is a higher level of performance achieved faster with an external relative to an internal focus, but the skill is retained more effectively”. Surprisingly, looking at the effects of directing attention externally or internally during mental practice has not yet been fully explored. One of the most remarkable capacities of the mind is its ability to simulate sensations, movements and other types of experience. Accordingly, motor imagery (MI) refers to the mental representation of an action without engaging in its actual execution. There is now ample evidence that MI substantially contributes to improve motor performance and facilitate motor recovery (e.g., Driskell et al., 1994; Guillot and Collet, 2008; Sharma et al., 2006; de Vries and Mulder, 2007). Practically, MI is a multi-sensory construct based on different sensory modalities. While visual imagery refers as to the visualization of an action, kinesthetic imagery rather involves the sensations of how it feels to perform, including the force and effort perceived during movement and balance (Callow and Waters, 2005). Other researchers introduced the concept of imagery perspectives. During internal (first-person) perspective, performers visualize the action as how would happen in the real-life situation and see images as if through their own eyes, while in the external (third-person) perspective they imagine, as spectators, the action that somebody is performing, regardless of the agency of the movement (i. e., whether they ‘see’ themselves or others). While imagery research generally demonstrated that all imagery modalities and perspectives can serve different purposes, and that their respective effectiveness may depend on the nature of the task being imagined, some authors specifically compared the efficacy of each imagery perspective. External visual imagery was found to be effective for form-based tasks as athletes could easily visualize the global positions and movements that are required for successful performance (Hardy and Callow, 1999; White and Hardy, 1995). Conversely, internal visual imagery would be superior in goal-directed tasks or motor skills that incorporate changes in the visual field (Callow and Roberts, 2012; White and Hardy, 1995). More recently, some authors further underlined the influence of individual sport experience (Morris and Spittle, 2012) and task requirements (Collet and Guillot, 2012) on respective visual imagery perspective efficacy, while others highlighted the distinction between imagery perspective use and imagery perspective preference (Callow and Roberts, 2012). Basically, adopting an external focus of attention during MI might promote associations between movements and their exteroceptive effects, whereas using an internal focus would support the link between movement and both tactile and kinesthetic sensations. In other words, providing specific imagery instructions on the effects of the movement might result in using an external visual imagery perspective, whereas prioritizing tactile and kinesthetic sensations would mean combining internal visual imagery perspective and kinesthetic imagery. In tennis, for example, athletes would adopt an internal focus during MI while feeling arm movements and effort needed for serving, as well as seeing the ball throw and the hitting phase. In contrast, an external focus would require imagining the ball trajectory and its rebound after serve. The tennis serve is certainly one of the most difficult tennis shot to learn, but it can substantially contribute to win or gain advantage in the point. When considering tennis serve performance, the relation between speed and accuracy is critical (Brody, 2003). First serves have usually greater velocity, players being successful in hitting the ball in the proper serve area about 40% to 70% of the time (Davids et al., 2006). In contrast, second serves have a slower velocity ball and a much higher probability of landing in the proper court (near 90%). Hence, players adjust the speed of the serve and these two factors must be considered to evaluate serve performance (Davids et al., 2006). In addition, regularity of the performance, i.e. low performance variability, as well as percentage of successful serves and percentage of points won after first serve during tennis matches, are three complementary relevant indicators of serve performance (Brody, 2003). Practically, during the classical course of motor learning, coaches often provide instructions related to the movement. As well, athletes spontaneously focus on the key-components of the correct movement to be performed, for instance to fit a model or template performance. Previous research showed that MI is a reliable technique to improve the effectiveness of the tennis serve (e.g., Coelho et al., 2007; Guillot et al., 2012; Mamassis, 2005). In most of these MI interventions, athletes are requested to successively rehearse each stage of the movement mentally. Unfortunately, few details are usually provided with regards to the specific content of the imagery experience. Based on the literature highlighting the advantage of the external focus of attention in motor skills requiring precision, the present study aimed at evaluating whether specifically adopting an external focus during MI might contribute to enhance tennis serve performance. Practically, players were instructed to mentally focus on ball trajectory and visualize the space above the net where the serve can be successfully hit. This has been defined as the ‘safety window’ (Brechbuhl et al., 2001), which is individually calculated to determine the adequate safety ranges for the serve. Through a within-subjects design including a sample of young elite tennis players, we postulated that using MI with an external focus of attention might positively impact subsequent motor performance. |