Entrainment (defined here as the process whereby two interacting periodic systems, such as the heart, lungs, and voluntary musculature, become synchronized) of physiological rhythms has been the subject of increasing investigation (Niizeki, 2004; Nomura et al., 2006). Rhythmic entrainment between various organs in the body comes about due to the extremely large number of electrical connections between them. It has been surmised that the greatest question on this topic is not why entrainment occurs, but why it is not even more prevalent (Glass, 2001). For example, researchers have found significant coupling between the cardiovascular and respiratory systems. The relationship can be identified using an integer ratio (Kenner et al., 1976; Schafer et al., 1998; 1999; Seidel and Herzel, 1998) and is most prevalent during sleep and in a relaxed state, but decreases during exercise (Kenwright et al., 2008) and periods of stress or disease (Lotric and Stefanovska, 2000). In general, it has been thought that such coupling establishes a feed-forward system (Eldridge et al., 1985) of economical co-action and thus favors the functional economy of the organism (Lotric and Stefanovska, 2000). In addition to coupling of internal organs to each other, there is an increasing amount of evidence to show that coupling can exist between organs and voluntary activity as well. For example, the existence of cardiolocomotor synchronization (CLS) has been well established for an individual performing a rhythmic activity, such as walking (Coleman, 1921; Kirby et al., 1989; Niizeki et al., 1993; Novak et al., 2007), running (Kirby et al., 1989; Nakazumi et al., 1986; Niizeki et al., 1993; Nomura et al., 2001; 2003; 2006; O’Rourke et al., 1993; Udo et al., 1990), or cycling (Blain et al., 2009; Kirby et al., 1989). Coupling has even been shown to occur by passive mechanical oscillation as well (Bhattacharya et al. , 1979). In all cases of CLS, the rhythmic activity was tailored such that its frequency was at or near the heart rate. It was thought that entrainment occurs primarily through a hydraulic mechanism, which plays a dominant role in the efficiency of heart function (Bhattacharya et al., 1979). This conclusion was reached in part because activities that involved significant vertical motion (Bechbache and Duffin, 1977), like running or passive mechanical oscillation (Bhattacharya et al., 1979), tended to result in greater entrainment compared to walking or cycling (Kirby et al., 1992; Nomura et al., 2003). In comparison Niizeki, 2004 showed the use of a thigh-cuff occlusion rhythm to generate significant entrainment while sitting, which would indicate that vertical motion per se may not be necessary to induce CLS. One potential method of action for CLS is related to the phase relationship between heart beat and muscle contraction (Nomura et al., 2006; Udo et al., 1990). The cardiac cycle may be timed to deliver blood when the intramuscular pressure is not maximal (i.e. when the muscle is relaxed) (Kirby et al., 1989; Niizeki, 2004; Udo et al., 1990), and the cardiac rhythm is influenced from a neural circuit arising from peripheral inputs (Niizeki et al., 1993). It has also been shown that respiratory rate may be entrained by locomotor rhythms. This entrainment generally occurs at an integer ratio (Iscoe and Polosa, 1976) and is more significant when the exercise increases in intensity (Bernasconi et al., 1995; Bernasconi and Kohl, 1993; Jasinskas et al., 1980) and when the locomotor rhythm is paced (Bechbache and Duffin, 1977; Bernasconi and Kohl, 1993). Also, the coupling seems to be more prevalent in more experienced runners (McDermott et al., 2003). Interestingly, during walking and running this entrainment is more affected by stride rate instead of work rate (Raβler and Kohl, 1996), and tends to decrease in the presence of CLS (Niizeki et al., 1993). There is a definite cardio-respiratory entrainment, as has been shown through respiratory-sinus arrhythmia (RSA) (Blain et al., 2009; Nomura et al., 2001; Schafer et al., 1999), which may also be a contributing factor for the existence of CLS. Oxygen uptake has been shown to be significantly lowered during running when cardio-respiratory entrainment occurs (Bernasconi and Kohl, 1993), but is not significantly affected during walking, likely due to the lowered energy expenditure during walking (Raβler and Kohl, 1996). Cardiolocomotor synchronization has been shown to improve the efficiency of locomotor activity. In a seminal paper by Coleman, 1921 a man always became breathless when halfway up a hill, but was able to climb without breathlessness when he timed his steps with his heart beat, additionally the increase in blood pressure was only half as great. Economy of locomotor activity is measured as the amount of oxygen required for a particular activity (VO2) (Conley and Krahenbuhl, 1980). O’Rourke et al. (1992) noted that the natural stride rate of highly competitive runners was very close to their exercise heart rate. Oxygen uptake has been shown to be significantly less when CLS occurs than when it does not (Udo et al., 1990), along with an increase in stroke volume (Zhang et al., 2002). It has also been shown that blood pressure varies during running, and that the frequency of variation is equal to the difference between heart rate and stride rate (O’Rourke et al., 1993; Palatini et al., 1989). However, a more stable blood pressure may allow for more efficient blood perfusion to the muscles (Palatini et al., 1989), which would also contribute to an improvement in efficiency during CLS. As mentioned earlier, all studies of CLS for runners conducted thus far involve creating a scenario where the stride rate and the heart rate are almost identical. However, the natural stride rate and heart rate during running may not have a 1:1 ratio. The purpose of the present study was to investigate the potential performance benefit of harmonic coupling other than a 1:1 ratio resulting from runners using an audio pacing signal to allow them to match their stride to the simplest integer ratio of the heart rate (e.g., 1:2, 2:3, 3:2) in which the pacing signal falls within an individualized comfortable range for each test subject (i.e. adaptive paced CLS, or forced CLS). A generally accepted range from 160 to 190 steps per minute is expected, though this may vary between individuals, depending on fitness level, stride length, and average running speed (Cavanagh et al., 1977; Cavanagh and Williams, 1982; Heiderscheit et al., 2011). Heart rate variability occurs naturally both at rest and during exercise (Blain et al., 2009). Therefore, when providing an adaptive pacing signal, the pacing frequency was based on a time- averaged heart rate value instead of a point measurement. Time-averaging prevents moment-to-moment variations in pacing frequency (and therefore stride rate), which may be difficult for a runner to follow. An added benefit of adaptive paced CLS may be a reduction in heart rate variability, due to the entrainment effect of a relatively constant stride rate at a simple integer ratio of the heart rate. A constant stride rate and reduced HR variability may both help increase the overall efficiency of the heart and voluntary musculature involved in running, thereby improving performance. |