One hundred and fourteen swimmers from the same competitive swimming age group category (girls of 11-12 and boys of 12-13 years of age), participating in a training campus, volunteered for this study. Before beginning the measurements, the protocol was fully explained to the participants and their respective coaches. The local Ethics Committee approved the experimental procedures and the swimmers’ parents signed a consent form, in which the protocol was described. It was implemented in the prepa-ratory period of the first macrocycle of the training season. Their mean values related to frequency and percentages of swimmers in the different Tanner maturation stages are described in Table 1, being possible to observe that there are 60 pubertal (stages 2 and 3) and 54 post-pubertal swimmers (stages 4 and 5), corresponding to 52.6 and 47.4%. Complementarily, and following Tanner and Whitehouse (1982), a maturation evaluation was made dividing swimmers in three stages: pre-pubertal swimmers (stage 1), pubertal swimmers (stages 2 and 3), and post-pubertal swimmers (stage 4 or higher). The swimmers maturation evaluation was made by presenting images to them related to the development of secondary sexual characteristics - genital (boys), breast (girls) and pubic hair (boys and girls) - and a self-evaluation rating was carried on. The images were also presented to swimmers’ parents and coaches, with the final result expressed as the mean value of these three evaluations. For the kinematical evaluation, swimmers performed 25-m backstroke at the 50-m race pace. Each subject started in the water and swam alone, without the pressure of opponents, to reduce the drafting or pacing effects (Barbosa et al., 2010). Afterwards, swimmers were informed of their performance time, which was expected to be within ± 2.5 % of the targeted race speed; when the time was unexpected, the subject repeated the trial after a 30 min interval. Two underwater video cameras (Sony® DCR-HC42E, 1/250 digital shutter, Nagoya, Japan), placed in the sagital and in the frontal planes inside a sealed housing (SPK - HCB waterproof box, Tokyo, Japan), recorded two complete underwater arm stroke cycles. A bi-dimensional images calibration structure (6.30m2, and 13 calibration points) was used to transform the virtual coordinates into the real ones. Kinematical analysis was performed using APASystem software (Ariel Dynamics, San Diego, USA), digitizing the skin markers manually and frame by frame (at 50 Hz) to have more objective analysis. The aerial phase was measured through the time that the arm was out of water. The hip (femoral condyle) and, on both sides of the body, the distal end of the middle finger, the wrist, the elbow, the shoulder and the ankle were digitized using the Zatsiorsky and Seluyanov’s model, adapted by de Leva (1996); the digitized-redigitized reliability was very high (Intra Class Correlation coefficient of 0.982). The backstroke arm action was divided into six phases (Chollet et al., 2008): (i) entry and catch, from the entry of the hand into the water to the beginning of its backward movement; (ii) pull, starting when the hand begins the backward movement and ending with its arrival in a vertical plane to the shoulder (the first part of propulsive phase); (iii) push, from the position of the hand below the shoulder to the end of the hand’s backward movement (the second propulsive phase); (iv) hand lag time, corresponding to the time when the hand stops at the thigh after the push phase and before the clearing; (v) clearing, from the hand release upward to the beginning of the exit from the water; and (vi) recovery, from the point of water release to the water re-entry of the arm. Each phase was expressed as a percentage of the duration of a total arm stroke. The duration of the propulsive pha-ses was defined as a sum of the pull and push phases, and the duration of the non-propulsive phases the sum of the entry and catch, hand lag time, clearing and recovery phases. However, as stated previously, the clearing phase could also be considered as a propulsive phase if the swimmer sweeps his hand up, back, and in to his thigh, pushing water back with the palm of the hand and the underside of the forearm, called “three-peak stroke pattern” swimmers (Alves, 1996; Chollet et al., 2008; Maglischo, 2003; Schleihauf et al., 1988). From there, as it is unclear if young swimmers mostly exhibited two or three-peak stroke pattern, the inter-arm coordination was assessed by two Indexes of Coordination (IdC1 and IdC2), which quantifies the lag time between the possible propulsive phases of the left arm and the right arm (Lerda and Cardelli, 2003): IdC1 corresponds to the time between the end of the push phase of one arm and the beginning of the pull phase of the other arm and IdC2 was the time between the end of the clearing phase of one arm and the beginning of the pull phase of the other arm. These time gaps were computed for the right and left arms, then averaged and expressed as percentage of the mean duration of a stroke cycle. In other words, IdC1 measured the continuity of the propulsive phases with two-peak, and IdC2 assessed the propulsive continuity in case of swimmers with three peak stroke pattern. Speed values were computed through the ratio of the displacement of the hip in an arm cycle and its total duration, and SL was determined by the horizontal distance traveled by the hip during a complete stroke cycle. The hip forward movements were used because it provides a good estimate of the swimmer’s horizontal velocity and displacement which is relevant for diagnostic purposes, especially to assess swimming efficiency (Fernandes et al., 2012). SR corresponded to the number of arm cycles performed per minute and SI was achieved through the product of velocity and SL (Costill et al., 1985). Data were tested for normality of distribution using the Skewness test. The statistical analysis performed was based on exploratory data analysis. Mean and SD were calculated for all measured parameters. To compare genders and maturation, the analysis of independent measures ANOVA was applied. As no interaction between genders and maturation status was observed, a separated analysis was made by conducting a one-way ANOVA was conducted comparing maturation status regarding genders. The statistical significance was set at p ≤ 0.05 (SPSS Statistics version 18.0). This statistical analysis was applied for all subjects (independently of their maturation and gender), according to the maturation group (independently of their gender), and by gender (independently of maturation group). Finally, the relation between all parameters analyzed was observed by determining the momentum Pearson correlation coefficient. |