Research article - (2013)12, 80 - 87 |
Lumbar Corsets Can Decrease Lumbar Motion in Golf Swing |
Koji Hashimoto1,2, Kei Miyamoto3,, Takashi Yanagawa4, Ryo Hattori5, Takaaki Aoki5, Toshio Matsuoka6, Takatoshi Ohno2, Katsuji Shimizu2 |
Key words: Golf, back pain, motion analysis, orthosis, corset |
Key Points |
|
|
|
Subjects |
Eleven amateur male golfers, of mean age 26.4 years (range 22-36 years), mean height 1.73 m (range1.58-1.81 m) and mean weight 66.8 kg (range 47-84 kg) volunteered for this study. All subjects were in good health and none had a history of low back problems or spinal surgery. Their average golf score over the last 5 rounds of golf (18 holes each) was 80.2. |
Preparation for 3-dimensional analyses of golf swing |
Twenty-two reflective markers were attached to the right and left heels, the right and left ankles (lateral malleolus), the right and left toes (dorsal surface over the second metatarsal head), the right and left knees (lateral condyle of femoral bone), the right and left anterior and posterior superior iliac spine, the right and left thighs (between the knee and the anterior superior iliac spines), the right and left tibiae (between the knee and ankle markers), the C7 and Th10 spinous processes, the xiphoid process of the sternum (STRN), the jugular notch where the clavicle meets the sternum, and the right and left acromio-clavicular joints of each subject ( |
Three-dimensional analyses of golf swings |
Using a VICON system (Oxford Metrics, Oxford, UK), 3-dimensional kinematic data of the skin markers during golf swings were recorded at a frequency of 120 Hz using 11 cameras. Each subject took three full swings with maximal effort under each of the 3 conditions (WOC, SC, and HC). Three dimensional marker trajectories of all swings were synchronized at impact. Dynamic changes of the thoraco-lumbar spine were calculated as the angle and angular velocity between the thorax and pelvis. Rotation angles of both hip joints were measured, and the intersegmental motion between the thorax and pelvis in extension, rotation, and lateral tilt was calculated using Euler angles. Using the VICON system, the positions of the body surface markers were digitized. Four points, on the right and left anterior-superior iliac spine (ASIS) and posterior-superior iliac spine (PSIS), were used to define the pelvic frame, with the medial-lateral axis being the line connecting the right and left ASISs, and the superior-inferior axis being that normal to the surface defined by the 2 ASISs and the midpoint of the PSISs. The frame of the thorax was defined by 3 points, the jugular notch, xiphoid and C7. On the frame of the thorax, the superior-inferior axis was defined by the line connecting the jugular notch and the xiphoid, and the medial-lateral axis was the normal vector to the surface defined by the jugular notch, the xiphoid, and C7. Movements of thorax segment were expressed in extension, left rotation, and lateral tilt with respect to the pelvis segment, by calculating Euler angles between these two segments. The rotational matrix of the thorax with respect to the pelvis (RTP) was expressed: |
Study parameters |
Statistical analysis |
Consistently, all of the 3 swing trials were averaged for analysis in each subject. Each parameter measured under the 3 conditions was compared using the Friedman test, followed by Wilcoxon’s signed rank test. The statistical significance was consistently defined as p value of less than 0.05 throughout the study. |
Ethical problems |
This study design was approved by the ethics committee of our institution, and all participants provided written informed consent. |
|
|
Three-dimensional motion of the lumbar spine:1. Lumbar Extension |
2. Lumbar Rotation |
3. Lumbar Tilt |
4. Hip rotation angle |
The rotation angle of the right hip at the top of the swing was 16% higher (p < 0.05) and the rotation angle of the left hip at the end of the swing was 19% higher (p < 0.05) under HC than under WOC conditions ( |
|
|
New findings in this study |
Our analysis in 11 amateur golfers showed, for the first time, that wearing lumbar corsets during a golf swing can effectively decrease lumbar extension and rotation angles and angular velocity, thus presumably relieving stress at the lumbar spinal structures. This effect was significant in hard, but not in soft, type corsets. Moreover, we found that wearing lumbar corsets increased the rotational motion of the hip joint while reducing the rotation of the lumbar spine. |
Decrease in lumbar extension and rotation angle at the finish of a golf swing |
Trunk hyperextension at the finish of a golf swing has been considered a risk factor for LBP (Geisler, |
Wearing corsets restrict lumbar range of motion during golf swings |
A case study of a golfer with LBP showed that decreasing the amount of spinal motion in the axial, sagittal, and coronal planes during golf swings can reduce compressive and torsional loads on the lumbar spine, thus reducing LBP. (Grimshaw and Burden, |
Wearing corsets restrict lumbar angular velocity during golf swings |
Rapid spinal rotation velocity during a golf swing has been reported to result in a considerable spinal load, resulting in the development of low back injuries (Hosea et al., |
Effects of wearing corsets on hip rotation |
Hip rotation plays an important role in rotation related sports (Vad et al., |
Different effects of the 2 types of orthosis |
We assessed 2 types of corsets, SCs and HCs. Our motion analyses suggest that wearing an HC may result in a greater reduction in lumbar spinal range of motion in 3 planes during golf swings. This result was compatible with a study on lumbar orthosis in healing symptomatic lumbar spondylolysis (Sairyo et al., |
Limitations of the study |
This study had several limitations. First, 3-dimensional motion analyses were performed using skin markers, which may introduce a bias. Second, healthy young male amateur golfers participated in this study. To better understand 3-dimensional motions in golfers with low back disorders, motion analyses should be performed in golfers with LBP. Third, wearing lumbar corsets may have affected swing performance including head speed, accuracy of control, and carrying distance. Fourth, in this study, the immobilizing effect of the corset on lumbar spine and subsequent effects on thoracic spine, pelvis, and hip joints were analyzed. However, problems in the subsequent effects on the other parts of the body have not been discussed. Future study needs to focus on the negative effects of wearing lumbar corsets during golf swing. |
|
|
Our findings may be important for both clinicians and golfers. First, wearing a corset can restrict the hyperextension of the lumbar spine, which may be a pain generating maneuver associated with spondylolysis or facet syndrome. Second, wearing an HC can reduce the magnitude of lumbar rotation and increase hip rotation, changes that may benefit patients with conditions of lumbar disc degeneration. Third, wearing corsets may prevent the development of LBP in golfers. Fourth, providing golfers with this type of kinesiological information may increase their awareness of the effect of lumbar orthosis on their swing. |
AUTHOR BIOGRAPHY |
|
REFERENCES |
|