To the best of our knowledge, this is the first study describing the typical TL and the psychophysiological stress experienced by a female professional futsal team during a 5-week training mesocycle. This study demonstrates that increased TL, monotony and training strain may be associated with alterations in SIgA levels and stress symptoms in a non-linear fashion, therefore suggesting a non-linear dose-response relationship. Nevertheless, our results failed to demonstrate any correlation among these variables. The team coaches programmed the taper strategy to reduce training loads in the last 2 weeks (weeks 4 and 5) of training period before the competition, decreasing volume and maintaining training intensity of the sessions. In the week 4, RT frequency was decreased to 2 times per week, while no RT was performed in the week 5. Technical tactical training volume and intensity were maintained constant during this period. Internal TL varied in accordance to the planned external training loads (Figure 1). The strategy of reducing TL prior to the competition is a common practice among strength and conditioning coaches as a recovery period because low TL may result in a transient improvement in performance due to supercompensation (Coutts et al., 2007b; 2007c). In the present study there was a reduction of about 45% of TL during the taper period. Coutts et al., 2007a observed that large reduction (~45%) of internal TL during taper period in male rugby players induced an increase in the testosterone/cortisol (T/C) ratio and glutamine/glutamate (Gln/Glu) ratio and decreased plasma glutamate and creatine kinase (CK) activity concomitant with positive endurance and power performance changes. The tapering period also allows athletes to recover from psychophysiological distress or illness. In agreement with the findings of Papacosta et al., 2013 that reported changes in SIgA levels during the tapering period in judo athletes, the present study also presented a significant positive change in ∆% of SIgA concentration in the same period of training, suggesting that this tapering strategy is a suitable approach to allow some degree of immune function recovery. The effectiveness of the training programs depends on the successful manipulation of the total training volume and intensity. High scores of monotony and training strain are a result of low TL variability, which in turn has been suggested to be related to the onset of overtraining, when combined with high TL (Foster, 1998). In the present study, the third week presented the highest overall weekly TL (3057 AU), monotony (1.6 AU) and training strain (4186 AU), as noted in Figure 1A, B, C and D1, respectively. Foster et al. (1998) found that for top-level speed skaters the incidence of banal infections, which is thought to be a marker of the early stages of overtraining, was higher in the weeks at which accumulated TL, monotony and strain exceeded approximately 4400, 2.2, and 6000 AU, respectively. However, to determine the relationships between TL and infection risk or to determine a secure TL threshold for individual training is still a matter of debate, instigating further investigations in sports sciences. The perceived TL can be influenced by innate characteristics, quantity and the nature of external TL and fitness level (Impellizzeri et al., 2004; Milanez et al., 2011). In male futsal, for example, players with a higher aerobic fitness reported lower TL values compared with their less fit counterparts, despite undergoing similar external TL (Milanez et al., 2011). Furthermore, gender differences would be also influencing psycophysiological response to TL in individual and team sports (Kellmann et al., 2001; di Fronso et al., 2013). For instance, Kellmann et al., 2001, suggested that female rowers would experience higher levels of stress and lower levels of recovery than males when exposed to similar TL. Further, di Fronso et al., 2013 found lower scores of physical recovery, sleep quality, and self efficacy in female basketball players when compared to males. Consequently, female athletes may require more attention from coaches and physical trainers during the training monitoring process. However, further evidence is necessary in this area for a better understanding of the role of aerobic fitness, competitive experience and immunological responses in stress tolerance to training and competitive loads in female athletes. Previous studies evaluated the salivary SIgA levels in order to monitor psychophysiological stress in response to TL in similar training periods (Fahlman and Engels, 2005; Leicht et al., 2012) but few of them quantified the TL by the session-RPE method (Moreira et al., 2009; 2011a). In the present study, the significant reduction in ∆% SIgA concentration was found in week 3 in response to increased TL, monotony and strain. Our results are in agreement with previous studies in the literature (Leicht et al., 2012; Moreira et al., 2011b). For instance, Moreira et al. (2011b) found a significant decrease in the SIgA secretion rate after a period of 4 weeks of training in basketball players. Subsequently, Leicht et al., 2012 described a negative relationship between TL and SIgA levels in tetraplegic wheelchair rugby players. In this respect, the goodness of fit (R2 ranged from 0.68 to 0.89) found in the present study would suggest a non-linear dose-response relationship between SIgA with TL and strain. That is, for this group of players, values of TL and strain ~435 and ~3160 AU respectively would be desirable because higher values would decrease SIgA levels (Figure 2A, B, D and E). These results provide important information for coaches and sport scientists regarding the utilization of SIgA as useful markers of physiological stress and the “optimal” TL to potentially minimize the risk of URI. Impairment of salivary SIgA secretion in response to TL and psychophysiological stress before or during the URI symptom items has been suggested by other authors as a symptom of overreaching/overtraining (Gleeson et al., 2011; Neville et al., 2008; Tsai et al., 2011). It is assumed that increases in the symptom items of intense and rigorous training periods may lead to the formation of the “open-window” of immunosuppression and increase the risk of URI (Koch et al., 2007; Nieman, 1997). Fahlman and Engels, 2005 observed, over a 12 month training period, that college football players had a greater risk of contracting infections when SIgA secretion was below 40 µg·min-1. Gleeson et al., 1999 observed, over a 7 month training period, that SIgA concentration values ≤ 40 µg·ml-1 were associated with an increased number of URI symptom items over a training season in elite swimmers. In the present study, mean SIgA concentration and SIgA secretion rate of the team reached risk levels (in week 3) as suggested by Gleeson et al., 1999 and Fahlman and Engels, 2005 respectively, but the large increase of URI symptom items in the week 3 was not significant. Our results are in agreement with previous studies that reported no significant relationships between SIgA and symptoms of URI in different sports like tennis, female soccer, elite tetraplegic rugby and basketball (Leicht et al., 2012; Novas et al., 2002; Novas et al., 2003). Although Novas et al., 2002 found a relationship between the increase in energy expenditure and URI symptoms, these authors did not find a relationship between URI symptoms and SIgA levels in female tennis players (Novas et al., 2003). Thus, the relationship between SIgA levels and URI is still not clear as there are contradictory results in the literature (Fahlman and Engels, 2005; Gleeson et al., 1999; Leicht et al., 2012; Novas et al., 2002; Novas et al., 2003; Vardiman et al., 2011). Hence, such a relationship must be considered with caution because factors other than salivary antibody levels may contribute to infection development (Diamond et al., 2008). Some of those studies found increased symptoms of URI concomitant with a decrease in SIgA levels, although a non-linear relationship among these variables is expected (Fahlman and Engels, 2005; Gleeson et al., 1999). DALDA questionnaire also has been suggested to be useful for monitoring psychophysiological stress in response to TL (Coutts and Reaburn, 2008; Moreira et al., 2011b). This tool has been shown to be sensitive to TL (Coutts and Reaburn, 2008; Moreira et al., 2011b) as well as to bodily reactions to training stress (Coutts and Reaburn, 2008). For instance, Nicholls et al., 2009 found that DALDA was able to discriminate between different periods such as rest, training and pre- and post-match days. In this previous study, professional rugby players reported greater stress on training days, when compared to rest period and match days. In the present study we found a goodness of fit (R2 ranged from 0.64 to 0.81) between an increased number of “worse than normal” scores with TL and strain. To the best of our knowledge, this is the first study reporting such as relationships. Therefore, it could be suggested that the DALDA questionnaire is sensitive for monitoring psychophysiological stress in response to the variations of TL. For this group of players an optimal range of values between 343 and 419 UA to TL and 2639 and 3060 AU to strain training would be suggested, since below and above these values increased responses of stress symptoms were observed (see Figure 2 C and F). Higher levels of stress symptoms at low TL values coincided with the period immediately preceding the competition. Hence, they may have been mainly caused by anxiety and psychological stress rather than by TL. The main limitation of the present investigation is the small sample size, but some players were injured while others were called to the National Brazilian team and could not complete the study. Additionally, the goalkeepers were excluded from the study because their training routine and the TL experienced are quite different from the outfield players. Furthermore, the training program period investigated was relatively shorter than those used in previous studies that found some relationship between SIgA and URI (Fahlman and Engels, 2005; Gleeson et al., 1999). Additionally, URI symptoms could have been more reliable if diagnosed by a medical doctor rather than using the questionnaire. In summary, the present study demonstrated an interesting link between TL, monotony and training strain with SIgA levels and stress symptoms. However, although two players reported altogether 17 URI symptoms in week 3 concurrent with an increase in TL, monotony, strain training, stress symptoms and a decrease in SIgA concentration, this increase was not statistically significant. However, a non-linear dose-response relationship between TL and strain with SIgA and stress symptoms was detected in the present study. |