The main findings of the present study were that older soccer players with more training experience demonstrated a different pattern of fiber type composition, MHC protein isoforms co-expression, CSA, cardiorespiratory values and muscle strength. The fiber type composition determined by MHC isoforms analysis showed a higher percentage of MHC IIA in Group C (15 yrs old) compared to the other two Groups A and B (11, 13 yrs old). However, the percentage of slow twitch oxidative muscle fiber, type I, was significantly lower in Group C compared to Group A. As expected, the cardiorespiratory capacity and muscle strength of the hamstrings and quadriceps were significantly higher in the oldest Group C compared to the two younger Groups, A and B. The higher proportion of MHC IIA in the distribution of the muscle fibers, which was noted in Group C, may indicate a simultaneous adaptive response in both extensive and simultaneous anaerobic – strength and aerobic endurance soccer training. The present study indicates that variables such as age and training status play a role in muscle fibers co-expression. This study showed that changes in fast twitch muscle fibers (type II), due to the high percentage of fast twitch oxidative (type IIA) and the low percentage of fast glycolytic (type IIX), and co-expession commonly occur in prepubescent and pubescent trained athletes. This co-expression also appeared in pubescent adolescents and as the chronological and training aged increase muscle fibers may be transformed to the type II fiber spectrum. These significant differences that were found in the muscle composition of type I and IIA fibers between Groups should be a reflection of specific athletic requirements, even though genetic influences cannot be disregarded. It is worth mentioning that an athlete in Group C was found to have a percentage of fast twitch muscle fiber over 70%. In adults, a large proportion of individual muscle fibers has been found to contain more than one MHC isoforms in different ratios (i.e. I/IIA, IIA/IIX, I/IIA/IIX) (Klitgaard et al., 1990; Mandroukas et al., 2010; Staron and Hikida, 1992). In youth, it is yet unknown whether muscle fiber has had different attributes, either during isolated incidents, over various periods of time, or by uniting with other fiber types, namely hybrid muscle fibers. The results of the present study show the existence of “hybrid” muscle fibers, despite the fact that there were no significant differences in the percentage of muscle fibers according to age. Thus, it becomes apparent that both age and training experience play a role in the co-expression of different muscle fibers. While in adults the phenomenon of fluctuation between type II and co-expression is common, in children the phenomenon is less obvious. However, our study demonstrates just that condition, which may be due to the influence of training, thus the co-expression of muscle fibers is also evident in Group A. This leads us to believe that the muscle fiber has been predisposed to be in a position of transition between type II by factors such as age and in terms of a coaching regimen. The current study demonstrates that age in tandem with systematic long-term training may possibly affect muscle fibers, as shown by the results from Group C. The results lead to two ways of interpretation in correlation with the high percentage of MHC IIA combined with the low percentage of θœHC θ™, respectively in Group C. Firstly, it seems that the influence of training on pubertal boys is evident as it corroborates with the results of training in adult athletes. The documented influence of intensive training on MHC composition increases MHC IIA which is mainly due to the conversion of fibers containing MHC IIX to MHC IIA (Adams et al., 1993; Kesidis et al., 2008; Staron et al., 1994). Secondly, it seems that the influence of training may affect the reduction of oxidative muscle fibers type I. The significantly higher CSA of Group C was an expected result in comparison to Group A. However, what was unexpected was the significant difference in CSA observed between Groups A and B, considering the minor age difference between the two Groups. The difference noted may be attributed to the different stages of physical maturation between the two Groups. Interestingly, the results analysis showed elevated CSA in type IIC muscle fiber, the role of which is still questioned, as there is an unresolved question over whether IIC muscle fiber is an intermediate type between fast oxidative IIA and oxidative type I, or a fiber type in development perhaps close to cellular death and degradation (Mandroukas et al., 2010). It is worth mentioning that previous studies have observed this type of muscle fiber to present large amounts of CSA and oxidative potential (Ingjer, 1978). In comparison to Groups A and B, Group C demonstrated faster exercise times on the treadmill, along with a the higher concentration of blood lactate, VO2max, the distribution of muscle fiber type IIA, higher muscle strength and CSA, all of which show that the group displays appropriate energy (aerobic and anaerobic), enzymatic (mitochondria and anaerobic enzymes) hormonal and metabolic fundamentals to train at a high level and to activate fast oxidative muscle fibers type IIA able to cause adaptations. Although the muscle fibers characteristics in male adult soccer players have been studied extensively there is no information regarding muscle fiber alterations after long-term training in young soccer players. The question of at what age can exercise begin to cause adaptations is not new. Even in longitudinal studies which monitor the same subjects over the course of a whole year report the changes that occur reflect each subject’s continued development, as well as the changes that occur as a result of training. The difficulty of interpreting results in this type of athletic research in young athletes is in differentiation between the results caused by biological development from the changes that can be attributed to soccer training. The present study is the first to examine the MHC isoforms in young soccer players. The question that arises is whether long-term training is effective at causing adaptations that become apparent in the muscle profile of young soccer players, so that every person/athlete can be selected for the appropriate sport. However, a fundamental difficulty in conducting research in young subjects is the fact that is not as clear whether the changes observed are the result of training, growth, or a combination of the two factors. The higher aerobic capacity of Group C may be attributed not only to training, but also to hereditary endowment. The selection process for the soccer players of the current study was based on anthropometric criteria and technical skills and took place long before research for the study began. Some cross-sectional studies show variation in related maximal oxygen uptake values at developmental ages are probably due to hereditary factors and differences in the levels of physical activity. Our results are comparable to those reported by Hansen and Clausen (2004) for elite young Danish soccer players aged 10.5-13 yrs. The results of the present study support that test velocity in absolute peak torque values increase significantly with age (Forbes et al., 2009). The thirteen and fifteen year old soccer players of the present study had significantly higher peak torque values of hamstrings and quadriceps at all angular velocities than the eleven year old players. Controversially, between thirteen and fifteen year old soccer players a significant difference was found only in hamstrings, at just the velocity of 300°·sec-1. This finding is also supported by Forbes et al. (2009) who studied 156 young soccer players aged 11-17 years old and found a particular percentage increase at the age of 14 years old (approximately 35%). This increase in peak torque may be related to the natural growth- and strength-spurt under the known androgenic hormonal effect during puberty. Malina (1968) and later Beumen and Malina (1988) reported that the biological events that occur are complex and include changes to the nervous and endocrine systems, in coordination with anthropometric and physiological changes. During these pubertal ages other physiological changes take place, resistance and strength are also improved and training can be a stimulus for higher growth hormone and testosterone levels (Hansen et al., 1999; Zakas et al., 1994). Although the present study did not investigate hormonal production, it seems that the intensity and duration of training are important factors to consider on the evolution of growth. Zakas et al. (1994) who investigated boys aged, 10, 13 and 16yrs old found that after 3 months of training secreted growth hormone and testosterone levels in prepubertal participants (10yrs old) were not changed but in 13 and 16yr olds the indices pattern undergoes a remarkable alteration. The marked increase in physical performance in these ages occurs due to the muscular, neuronal, hormonal and biomechanical factors. It has been argued that due to lack of circulating androgens in prepubertal children, the strength improvements are largely caused by neurological, rather than muscular factors (Malina, 2006). The significant higher body weight in 15yrs old soccer players could be attributed to the growth spurt and increase of height and weight that is observed at this age. The processes of maturation do not occur at the same chronological age in all the subjects and the 90% percentile range of peak growth age is approximately 4.5 years (Borsboom et al., 1996). In adults, resistance training increased the number of satellite cells in young men and that there was a significant decrease after detraining (Kadi et al., 2006). Complete and systematic studies on the behavior of satellite cells in relation to training at a young age do not exist. It has been shown that satellite cells are equally distributed in type I and II fibers which suggests that the loading pattern of vastus lateralis muscle does not require a specific distribution of satellite cells among type I and II muscle fibers. It so appears that the strength training performed at young ages, mainly using personal body weight, during soccer training is not sufficient to cause an increase in satellite cells. Our results are in agreement with the study of Kadi et al. (2006), who found no significant difference between the percentage of satellite cells in contact with type I and II fibers in healthy subjects. The findings of the present study should be interpreted within a realm of the inherent limitations; mainly the absence of an untrained control group and the relatively moderate subject sample. Furthermore, our findings may have been influenced by genetic factors, the selection of the young subjects for the specific sport and adaptations caused by training. However, the current study could initiate further research regarding the effects of age, training and their combination on muscle fibers in prepubertal and pubertal boys. It is still unclear how large and how relevant to muscle function the adaptation of fiber type distribution to training can be (Ingalls 2004). It would be interesting for future studies to investigate and follow the young soccer players at regular intervals over time, examining the adaptations of muscle fiber to training (despite the inherent difficulties) in order to distinguish development/maturation from the influence of training. The knowledge gained from further research will allow for improved training regimens capable of maximizing performance, as well as provide clearer explanations as to what degree the possible alterations are due to growth and biological maturity and how substantial the contribution of soccer training is. When working with young athletes, such information is needed to enable quantitative biochemical characterization of muscle fiber types and to understand better the metabolism and degree of adaptability. This knowledge will help coaches design safer and more effective soccer training programs. |