The purpose of the present study was to investigate the biochemical and hematological changes due to prolonged exhaustive exercise in a marathon swimmer. Regarding the unusual distance of this event, this report not only provides a range of biochemical data, but is a particular attempt to explore the limits of human capabilities. To our knowledge, there is no evidence in the literature about the physiological effects of such a long distance swim. The vast majority of studies investigating the impact of ultraendurance exercise on biochemical parameters have focused mainly on such types of activities as running or cycling. As open-water swimming is not only very popular, but has also become an official Olympic event, the findings of the present report provide useful knowledge for physiologists as well as coaches and athletes. Many swimmers attempt to break personal, national or world records in ultraendurance swimming. Importantly, long-distance swimming in the river is an extremely demanding challenge and outdoor swimmers often face more stressful situations than ultraendurance runners or cyclists. Many hours of monotonous exercise in a horizontal position, differences in air and water temperature, darkness and poor visibility, danger of swallowing insects flying above the surface, as well as the difficulties faced in eating and drinking, are among the most important problems. The results of the present report demonstrate that many of the analyzed parameters remained almost unaffected compared to the pre-marathon values. Significant change during the observed period was noticed only for the leucocytes count and chloride concentration (p < 0.05). Increases in leukocyte count during the first hours after participation in this marathon swim, resulting mainly from increased neutrophil and monocyte counts, may reflect postexercise inflammatory response. This finding is consistent with previous reports on marathon runners (Davidson et al., 1987; Kratz et al., 2002; Reid et al., 2004) as well as with the latest study of Kabaskalis et al. (2011) who presented reactive neutrophilia after a marathon swim. Even exertion produced by swimming less than 10 km results in mild leukocytosis due to neutrophil mobilization similar to that observed during a bacterial infection. Additionally, acute severe exercises induce an oxidative state resulting in an acceleration of human neutrophil apoptosis (Syu et al., 2011). Unfortunately, the apoptotic status of circulating blood cells was not analyzed in our study. While some forms of regular physical activity may be associated with a lower likelihood of inflammatory marker elevation (King et al., 2003), ultra-endurance exercise is usually associated with a significant elevation of such markers as CRP, fibrinogen and leukocytes (Kim et al., 2009; Kratz et al., 2002; Neubauer et al., 2008; Reid et al., 2004). According to the findings of Kim et al (2009) a long-distance run induced an increase in plasma hs-CRP of over 40 fold, which remained elevated on day 6 of recovery. Another ultra-endurance exercise, such as an Ironman triathlon, resulted in a low-grade systemic inflammation which persisted for at least 5 days after the race (King et al., 2003). The subject did not develop biochemical or symptomatic hyponatremia, which is consistent with some previous reports demonstrating exercise-associated electrolyte changes in marathon athletes (Fallon et al., 1999; Rama et al., 1994; Reid et al., 2004; Spiropoulos et al., 2003; van Rensburg et al., 1986). The latest study of Wagner and al. (2012) showed two cases of asymptomatic hyponatremia among 25 male open-water ultra-marathon swimmers participating in a marathon swim in Lake Zurich. In our study, the lowest concentration of sodium was observed about 4 hours after the swim, reaching almost 134 mmol·l-1. Based on his experience from previous marathon swims, the subject paid particular attention to adequate fluid and solid food intake during the event. This is the most probable explanation of a relatively stable weight and serum sodium concentration during the observation period. The serum urea concentration of the subject increased importantly above baseline values immediately after the swim and remained over the normal limits until day 8 of the observation. Findings suggesting a long-term increase in serum urea after marathon races have been reported in several previous studies (Rama et al., 1994; Reid et al., 2004; Kratz et al., 2002). However, as serum creatinine remained within normal range, a decrease in renal function of our subject seems unlikely. Another important observation is associated with changes in serum aminotransferases. Several authors report a substantial elevation of AST and ALT after prolonged ultra-endurance exercise, mainly marathon running (Kratz et al., 2002; Lippi et al. 2011; Waśkiewicz et al., 2012; Wu et al., 2004). To investigate the possibility of liver injury in response to prolonged aerobic exercise, tests were performed for possible changes in GGT, a more specific liver enzyme. The observed relative stability of serum GGT throughout the whole measurement period ruled out a suspicion of liver damage in our subject. Most of the athletes described in previous studies exceeded the upper reference limits also for other enzymes, especially LDH and CK, indicating possible muscle damage due to strenuous exercise (Kim et al., 2007 and 2009; Waśkiewicz et al., 2012; Wu et al., 2004). In our study, a 3-fold rise in AST occurred immediately after the event with a progressive decrease to the normal value within 8 days. No definite conclusions in the context of muscle injury can be made, as no other muscle biomarkers were evaluated in our subject. However, swimming involves mainly non-weight-bearing activity and concentric contraction, and thus is thought to be a non-muscle-damaging exercise (Federation Internationale de Natation, 2005). Hypothermia is one of the potential clinical risks of open-water swimming. Body heat loss during water immersion can be many times that incurred during exposure to air of the same temperature (Fregly et al., 1996). According to the rules of the International Swimming Federation, the water temperature for official competitions should be higher than 16°C checked on the day of the event two hours before the starting time, in the middle of the course at a depth of 40 cm (Mougios 2007). In our study the swimmer did not experience severe hypothermia although the water temperature fell to 18° C at night. Castro et al (2009) observed hypothermia among most of elite marathon swimmers participating in a 10-km marathon swim in relatively warm water (21° C). However, it is complicated to compare our study with the above results, because the swimmers in Castro’s investigation were younger (mean age 21± 7 years old) and the distance covered was much shorter. It is probable that the effective thermoregulatory function of our subject may result from modified sensory functions of his hypothalamic centers, which is characteristic for swimmers exercising in warm and cold environments (Keatinge et al., 2001). Rüst et al. (2012) presented a case report describing an experienced open-water ultra-endurance 53-years old athlete swimming in water of 9.9°C for more than 6 h. The lowest body core temperature was 36°C between 35 and 60 min after finishing the swim. This case report showed that it was possible to swim for 6 h in water of 9.9°C and that the athlete did not suffer from hypothermia under these circumstances. The authos suggest that high body mass index, high body fat, previous experience, and specific preparation of the swimmer are among the most probable explanations for these findings (Rüst et al., 2012). The concept that an increased percentage of body fat allows for a better maintenance of body temperature has, however, no confirmation in the present study or those of other authors (Vybiral et al., 2000). Anthropometric measurements of our subject revealed a percentage of fat tissue within the typical range for adult athletes. Age is another important issue in the context of the presented case report. According to the available literature the endurance performance decreases with the increasing age. Generally, the peak endurance performance is maintained until the age of 35 years, followed by a progressive decline, mostly pronounced after the age 70 years (Donato et al., 2003; Tanaka and Seals, 2008). The subject of our study revealed favorable pre-swimming health conditions with 20.2 METs reached during a maximal treadmill exercise test. The presented above ultra-marathon completed at the age of 61 years was the best result in his whole adult career. This case report shows that it is possible to swim non-stop for above 27 h without experiencing substantial health problems. This exceptional performance reflects the contribution of several factors, but a unique interest in endurance sports, a high level of motivation and regular improvement of skills since early childhood should be particularly highlighted. Moreover, a favorable family and medical history, professional medical care and strong support of the closest relatives and friends are also noteworthy. His optimistic attitude correlates with good health practices (not smoking, proper daily sleep, nutrition patterns and recreation habits) which is in line with the observation of Lipowski (2012) that high level of optimism promotes good health behavior in athletes. The major limitations of this study comprise: 1) analyses of the biochemical and hematological changes limited to one subject; 2) lack of specific biomarkers of possible muscle damage. |