It is important for rowers to develop an effective coordination between upper and lower body (Shephard, 1998), since a non-optimal strategy could limit the power output and the efficiency of the limb motion (Hug et al., 2011).These observations suggest a fundamental role of muscle synergies during rowing. In our analysis, PCA was capable of extracting three synergies, similar to previous studies that applied non-negative matrix factorization (Turpin et al., 2011a; Turpin et al., 2011b; Turpin et al., 2011c). Our basic finding, that three component factors were accounted for muscle synergies during rowing, was reported earlier by Turpin et al. (2011b) who extracted three synergies from 23 muscles in nine subjects. They found the same basic patterns across different skill levels (Turpin et al., 2011a), fatiguing conditions (Turpin et al., 2011b), and power outputs (Turpin et al., 2011c). We have extended these results by showing that the basic patterns were conserved across different stretcher mechanisms (i.e., FE and SE). The similarity in the composition of three extracted synergies in both rowing conditions was accompanied by different emphasis on particular muscles, which indicated the robustness of the neuromuscular control to adapt to various mechanical constraints. We observed that the inventory of rowing tasks was achieved through modification of muscle loadings but not muscle synergy structure, which was in agreement with synergies studies on locomotion (Ivanenko et al., 2004), cycling (Wakeling and Horn, 2009) and rowing (Turpin et al., 2011a). The varimax factors were proposed to represent motor programs for groups of muscles that perform specific function during locomotion (Ivanenko et al., 2004). Some evidence for such functional grouping (i.e. leg drive for Synergy#1, arm pull for Synergy#2 and trunk swing for Synergy#3) was seen in our SE data. For instance, during SE rowing, the bi-articular leg muscles explained up to 60% of total VAF and were active during the propulsive phase (Synergy #1). Thigh muscles were the main power sources during rowing (Guével et al., 2011; Nowicky et al., 2005) and as multi-joint muscles they also play a role in transferring force generated from the stretcher to the trunk (Hofmijster et al., 2008). Next, the force generated was distributed to Synergy #3 (i.e., back muscles) which were active from the middle of drive phase up into early recovery phase. The trunk swing transferred the force generated by the leg extension (Hofmijster et al., 2008) to the Synergy#2, which consisted of three arm muscles. The arms synergy was active after the legs were fully extended to conserve the force continuity to the handle. Hence, by emphasizing leg drive, rowing on SE allows effective force transfer (Kleshnev, 2011). On the contrary, rowing on FE recruited a larger percentage of total muscle mass (Synergies #1 and #2) than rowing on SE due to cumulative force production during the drive phase. However, despite their huge cross sectional area, postural muscles were slow to transfer the force generated. Hence, reliance on back muscles prevented a quick increase of propulsive force, thus making the temporal structure of the drive less effective (Kleshnev, 2011). This explained the absence of clear distinction between legs, back and arms functional muscle synergy as observed in SE rowing. Meanwhile, due to the lack of motion of FE, separate Synergy #3 was activated to control the body movement during stroke transition. These synergies were similar to a previous study that analyzed muscle synergies on FE rowing (Turpin et al., 2011a). Additionally, our results on rowing variables were in line with previous studies (Holsgaard-Larsen and Jensen, 2010; Mello et al., 2009). Subjects preferred to row faster with shorter stroke on SE, because the slides mechanism reduced the inertial force between changing of strokes position (Mello et al., 2009). Longer stroke length was observed when rowing on FE to dissipate the rower’s momentum and reverse its direction, as explained by the work-energy theorem (Bernstein et al., 2002). The lack of motion of FE yielded two important consequences: (i) increased in total work, because the rower had to accelerate and decelerate his body at the end of each stroke (Martindale and Robertson, 1984), and (ii) minimal propulsive force loss, as force was transferred from the fixed stretcher to the rower’s body equally and in the opposite direction to which it was applied (Elliott et al., 2002). On the other hand, the power delivered to the handle can increased by up to 18% when subjects rowed on ergometers that allowed their center of mass to remain relatively stationary (Harrison, 1970) (i.e., rowing on SE). This probably explained better total energy savings (Martindale and Robertson, 1984), more power output and distance covered on SE compared to FE. On the other hand, the Concept2 ergometers only allowed symmetrical movements that resemble sculling, and investigators who focused on sculling had restricted measurements of the muscle activity to one side of the body (Nowicky et al., 2005; So et al., 2007). Under such experimental conditions, the detection of possible asymmetries in muscle activation between the two sides was not possible (Janshen et al., 2009). Therefore, we decided to check the laterality of muscle activity on eight rowing-related muscles bilaterally. The high Pearson’s r on index of waveform similarity for all muscles during the two rowing conditions indicated that muscle activity was indeed symmetrical. There were several limitations in our study. The only device that measured physiological attributes was a heart rate monitor, which limited our understanding in terms of muscle synergy and energy efficiency. As stated by d’Avella and Pai (2010), the robustness of muscle synergies should include consistency across various mechanical and physiological constraints. Also, the number and the choices of selected muscles did influence the patterns muscle synergy extracted (Steele et al., 2013). The lack of kinetic profile measurement and analysis reduced our insights regarding force transferred during rowing. |