Research article - (2014)13, 894 - 903 |
Heavy Resistance Training and Peri-Exercise Ingestion of a Multi-Ingredient Ergogenic Nutritional Supplement in Males: Effects on Body Composition, Muscle Performance and Markers of Muscle Protein Synthesis |
Mike Spillane, Neil Schwarz, Darryn S. Willoughby |
Key words: Whey protein, carbohydrate, creatine, amino acids, muscle strength, muscle hypertrophy, men |
Key Points |
|
|
|
Experimental approach |
In a randomized, double-blind, parallel design, non-resistance-trained males participated in a 4-day/week heavy resistance training program for 6 weeks in conjunction with the peri-exercise ingestion of either a multi-ingredient SizeOn Maximum Performance or protein/carbohydrate/creatine comparator supplement. Body composition and muscle performance were assessed, along with venous blood samples and muscle biopsies being obtained, before and after the 6-week intervention. |
Participants |
Twenty-four apparently healthy, resistance trained [regular, consistent resistance training (i.e. thrice weekly) for at least 1 year prior to the onset of the study], males between the ages of 18-35 and a body mass index between 18.5-30 kg·m–2 volunteered to participate in the double-blind study. Enrollment was open to men of all ethnicities. Only participants considered as low risk for cardiovascular disease and with no contraindications to exercise as outlined by the American College of Sports Medicine (ACSM) and who had not consumed any nutritional supplements (excluding multi-vitamins) 3 months prior to the study were allowed to participate. All participants provided written informed consent and were cleared for participation by passing a mandatory medical screening. All eligible subjects signed university-approved informed consent documents and approval was granted by the Institutional Review Board for the Protection of Human Subjects in Research of Baylor University. Additionally, all experimental procedures involved in the study conformed to the ethical consideration of the Helsinki Code. |
Assessment of body composition and muscle performance |
A testing session was performed prior to the first dose of supplement and beginning of the resistance training program (day 0) and on day 43, after 42 days of supplementation and resistance training. Body and composition and muscle performance were determined during these two testing sessions. The determination of the one-repetition maximum (1-RM) for the angled leg press and knee extension exercises was based upon our previous procedures (Shelmadine et al; Spillane et al., Willoughby et al., Total body mass (kg) was determined on a standard dual beam balance scale (Detecto, Webb City, MO). Percent body fat, fat mass, and fat-free mass, were determined using dual-energy x-ray absorptiometry (DEXA; Hologic Discovery Series W, Waltham, MA) based on our previous guidelines (Shelmadine et al., |
Dietary analyses |
For the 72 hours immediately prior to reporting to the lab for testing at Day 0 and 43, participants were instructed to record their dietary intake. During each of these 72-hour time periods, participants were instructed to not change their usual dietary habits. The dietary data were analyzed with the Food Processor dietary assessment software (ESHA Research, Salem, OR, USA) for determination of the average intake of total food energy and intake of the macronutrients. |
Venous blood sampling and muscle biopsies |
Venous blood samples and muscle biopsies were obtained during the testing sessions at Day 0 and 43. Blood was collected from the antecubital vein into a 10 ml Vacutainer tube. Blood samples were allowed to stand at room temperature for 10 minutes and then centrifuged. The serum was removed and frozen at -80°C for later analysis. Percutaneous muscle biopsies (50-70 mg) were obtained from the middle portion of the vastus lateralis muscle of the dominant leg at the midpoint between the patella and the greater trochanter of the femur at a depth between 1 and 2 cm. For the two biopsies, attempts were made to extract tissue from approximately the same location as the initial biopsy by using the pre-biopsy scar, depth markings on the needle, and a successive incision that was made approximately 0.5 cm to the former from medial to lateral. After removal, adipose tissue was trimmed from the muscle specimens and immediately frozen in liquid nitrogen and then stored at -808C for later analysis. |
Supplementation protocol |
In double-blind fashion, participants were assigned a 6-week (42-day) supplementation protocol consisting of the oral ingestion of either a 50 grams/day of a comparator (PCC) supplement or SizeOn Maximum Performance (SIZE) (Gaspari Nutrition, Inc., Lakewood, NJ). Both supplements contained 39 grams of maltodextrose, 7 grams of whey protein, and 4 grams of creatine monohydrate. Additionally, SizeOn contains vitamin C, thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, calcium, phosphorus, magnesium, sodium, and potassium, pterostilbene, BCAAs, sodium glycerophosphate, calcium glycerophosphate, potassium glycerophosphate, and the amino acids L-taurine, L-alanyl-L-glutamine, and magnesium glycyl glutamine. Both supplements, which were identical in color, texture, smell, and taste, were mixed in 30 ounces of water and half of the total daily dosage (15 ounces) was ingested 15 minutes prior to each exercise session and the remaining half (15 ounces) were ingested upon beginning exercise and completely consumed within 20 minutes into the exercise session. The supplements were ingested 4 times per week on exercise days only. Supplementation compliance was monitored by participants returning empty containers of their supplement on day 43, and also by completing weekly a supplement compliance questionnaire. |
Resistance training protocol |
Identical to weeks 1-6 for the protocol previously described (Schmitz et al., |
Assessment of serum cortisol, insulin, IGF-1, and GH |
From the two blood samples obtained at day 0 and day 43, serum samples were analyzed for cortisol, insulin, GH (Alpha Diagnostics, San Antonio, TX, USA), and IGF-1 (Enzo Life Sciences, Plymouth Meeting, PA, USA) using commercially-available enzyme-linked immunoabsorbent assay (ELISA) kits. For cortisol, this kit has a sensitivity of 0.4 µg·dl–1 and no cross-reactivity with epiandrosterone, 17-a-hydroxyprogesterone, progesterone, testosterone, or estradiol. The insulin kit has a sensitivity of 0.05 µIU·ml–1 and has no cross-reactivity with C-peptide, bilirubin, or hemoglobin. For GH, this kit has a sensitivity of 0.2 ng·ml–1 and no cross-reactivity with human chorionic gonadotropin (HCG) or prolactin. The sensitivity of the IGF-1 kit is 48.5 pg·ml–1, and does not cross-react with IGF-2, and IGFBPs 2-4, insulin, or GH. Absorbance’s, which were directly proportional to the concentration of hormone in the sample, were measured in duplicate at a wavelength of 450 nm using a microplate reader (iMark, Bio-Rad, Hercules, CA). A set of standards of known concentrations of each hormone was utilized to construct a standard curve by plotting the net absorbance values of the standards against the respective protein concentrations. By applying a linear curve using data reduction software (Microplate Manager, Bio-Rad, Hercules, CA, USA), the serum concentrations of each hormone were calculated. The overall intra-assay percent coefficients of variation were 6.2%, 6.8%, 7.4%, and 5.8% for cortisol insulin, GH, and IGF-1, respectively. |
Assessment of muscle total creatine |
Total muscle creatine levels were analyzed spectrophotometrically by the diacetyl/α-napthtol reaction as previously described (Spillane et al., |
Skeletal muscle cellular extraction |
Based on our previous approach (Shelmadine et al., |
Assessment of skeletal muscle proteins |
From the two muscle tissue samples obtained at day 0 and day 43, total muscle protein was further isolated from the skeletal muscle cellular extracts with repeated incubations in 0.1% SDS at 50°C and separated by centrifugation, and protein content was determined spectrophotometrically based on the Bradford method at a wavelength of 595 nm (Bradford, The assessment of total IRS-1, Akt, p70S6K, and 4EBP-1 was determined using commercially-available ELISA kits (Life Technologies, Grand Island, NY, USA) (Ferreira et al., The MHC protein isoform composition was determined under denaturing conditions using an Experion Pro260 automated electrophoresis system (Bio-Rad, Hercules, CA, USA) using the principles of SDS-PAGE and LabChip (Caliper Life Sciences, Hopkinton, MA, USA) technology (Spillane et al., |
Reported side effects from supplements |
At the testing session on day 43, participants reported by questionnaire whether they tolerated the supplement, supplementation protocol, as well as report any medical problems/symptoms they may have encountered throughout the protocol of the study. |
Statistical analysis |
Data were analyzed with separate 2 (group) x 2 (time) analysis of variance (ANOVA) using SPSS for Windows Version 20.0 software (SPSS, Chicago, IL). Significant differences among groups were identified by a Tukey HSD post-hoc test. However, to protect against Type I error, the conservative Hunyh-Feldt Epsilon correction factor was used to evaluate observed within-group F-ratios. An |
|
|
Subject demographics |
Twenty-six participants began the study; however, two dropped out due to reasons unrelated to the study. As a result, 24 participants completed the study. The PCC group (n = 12) had a mean (±SD) age of 20.61 ±2.46 years, height of 1.78 ± 0.04 m, and total body mass of 83.75 ±13.22 kg. The SIZE group (n = 12) had an age of 21.38 ±4.07 years, height of 180.58 ±5.20 cm, and total body mass of 8.63 ±13.52 kg. |
Dietary analyses, supplement compliance, and reported side effects |
The completed dietary intake forms were used to analyze the average daily caloric and macronutrient consumption ( In regard to compliance, PCC and SIZE were 88.32 ±9.12 % and 91.72 ±7.18 % compliant to the resistance training program, respectively. For supplementation compliance, PCC and SIZE were 93.94 ±3.55 % and 95.05 ±2.65 % compliant to the supplementation protocol, respectively. Over the course of the 6 weeks, three participants in PCC and two in SIZE reported side effects. For PCC, all participants reported feelings of nausea, 2 reported a rapid heart rate, and 1 reported shortness of breath. For SIZE, both participants reported dizziness, headache, and rapid heart rate, 1 participant reported feelings of nausea, shortness of breath, and nervousness. |
Body composition |
There were no significant differences in total body mass between groups (p = 0.866, effect size = 0.001) or as a result of resistance training (p = 0.788, effect size = 0.002). In addition, there were no significant changes occurring in total body water as a result of training (p = 0.863, effect size = 0.018) and supplementation (p = 0.655, effect size = 0.004). Fat mass was unchanged with resistance training (p = 0.325, effect size = 0.012) and supplementation (p = 0.448, effect size = 0.020). However, fat-free mass was significantly increased in both groups in response to training (p = 0.037; effect size = 0.130), but there were no significant differences between groups (p = 0.082, effect size = 0.100) ( |
Muscle Performance |
For muscle strength, there were no significant differences in upper-body strength with resistance training (p = 0.510, effect size = 0.009) and supplementation (p = 0.115, effect size = 0.002). However, lower-body strength demonstrated a significant increase with resistance training (p = 0.029, effect size = 0.095), but there was no significant difference with supplementation (p = 0.102, effect size = 0.055) ( Regarding muscle endurance, there were also no significant differences in upper-body endurance with resistance training (p = 0.422, effect size = 0.014) and supplementation (p = 0.840, effect size = 0.001). Although, lower-body endurance demonstrated a significant increase with resistance training (p = 0.027, effect size = 0.091), but there was no significant difference with supplementation (p = 0.658, effect size = 0.004) ( |
Serum insulin, IGF-1, GH, and cortisol |
Serum insulin demonstrated no significant differences with resistance training (p = 0.760, effect size = 0.002) and supplementation (p = 0.905, effect size = 0.001). In regard to IGF-1, there were no significant differences with resistance training (p = 0.950, effect size = 0.001) and supplementation (p = 0.361, effect size = 0.017). Similarly, no significant differences were noted for GH with resistance training (p = 0.819, effect size = 0.001) and supplementation (p = 0.169, effect size = 0.032). Cortisol also demonstrated no significant differences with resistance training (p = 0.182, effect size = 0.037) and supplementation (p = 0.608, effect size = 0.006) ( |
Total muscle creatine, total muscle protein, and MHC protein isoform content |
Total muscle creatine levels significantly increased in both groups (p = 0.044, effects size = 0.082) during the course of resistance training p = 0.020, effect size = 0.108); however, there was no significant Group x Test interaction (p = 0.279, effect size = 0.024). Total muscle protein content was significantly increased in both groups with training (p = 0.038, effect size = 0.092); however, there was no significant difference between groups (p = 0.230, effect size = 0.030). For MHC1 (p = 0.041, effect size = 0.085) and MHC2A (p = 0.029, effect size = 0.095), both isoforms were significantly increased in both groups with training; however, there was no significant change for MHC2X (p = 0.158, effect size = 0.041). There was no significant difference between groups for MHC 1 (p = 0.878, effect size = 0.001), MHC 2A (p = 0.657, effect size = 0.004), MHC2X (p = 0.884, effect size = 0.001) ( |
Total IRS-1, Akt, p70S6K, and 4EBP-1 |
For total IRS-1 (p = 0.041, effect size = 0.084) and Akt (p = 0.011, effect size = 0.087), both proteins were significantly increased in both groups with training; however, there was no significant change for total P70S6K (p = 0.403, effect size = 0.015) and 4EBP-1 (p = 0.276, effect size = 0.025). There was no significant difference between groups for total IRS-1 (p = 0.073, effect size = 0.065), Akt (p = 0.442, effect size = 0.034), P70S6K (p = 0.136, effect size = 0.046), and 4EBP-1 (p = 0.431, effect size = 0.013) ( |
|
|
The purpose of this study was to determine the effects of SizeOn Maximum Performance versus a conventional protein/carbohydrate/creatine comparator supplement on indices of muscular adaptations to resistance training in young men. We demonstrated that a daily 50 gram dose of the multi-ingredient ergogenic dietary supplement SizeOn Maximum Performance for 42 days combined with resistance training did not increases muscle mass and strength, nor did it elevate serum hormones and growth factors, augment skeletal muscle signaling pathway markers indicative of muscle protein synthesis, or increase total muscle and MHC protein content when compared to an equivalent daily dose of a protein/carbohydrate/cre-atine comparator. The outcomes we observed in body composition and muscle strength in both groups are similar to those we observed in our previous studies involving both four (Shelmadine et al., Supplement dosage may also explain the lack of difference between the two supplements. Both supplement groups were receiving four grams of creatine daily. This dose for creatine is lower than the typical five to seven grams/day which has been demonstrated by a number of studies to be effective at inducing ergogenic benefits in conjunction with resistance training (Volek et al., 1999; Willoughby and Rosene, 2001). In the Willoughby and Rosene (2001) study, five grams of creatine each day with resistance training resulted in preferential increases in muscle strength and mass that mirrored increases in total muscle protein content and MHC protein composition. In the present study, we observed resistance training-induced increases in these variables, but none were significantly different between groups. However, since we did not include a placebo group, it makes it difficult to specifically determine if our outcomes may have been due to the supplementation protocol, and not simply by resistance training. In addition, both groups were receiving whey protein and maltodextrose from their respective supplement at a daily dose of seven and 39 grams, respectively. Incidentally, seven grams of whey protein possesses an amount of leucine far below the so-called “leucine threshold” of three to four grams, necessary for increasing MPS (Breen and Phillips, In regard to the 39 grams of carbohydrate from each supplement in the current study, several studies have demonstrated that the addition of anywhere between 30 grams to 90 grams of carbohydrate to a protein dose that is known to effectively stimulate MPS (20-25 grams) has no additive or synergistic effect on MPS and muscle protein breakdown (Glynn et al., We have previously shown (Willoughby et al., In the current study, the primary difference between the two supplements was the inclusion of the various vitamins and minerals, pterostilbene, BCAAs, L-taurine, and L-alanyl-L-glutamine in SizeOn Maximum Performance. Therefore, if any difference occurred it would most likely be due to this difference between supplements. While much is known about the beneficial effects of BCAAs on muscle protein synthesis and breakdown, less is known about pterostilbene and exercise performance, and there appear to be no published studies on this topic. It has been shown that seven days of L-taurine supplementation, while producing a 13-fold increase in plasma taurine levels, did not increase muscle taurine content or alter substrate metabolism during prolonged exercise in humans (Galloway et al., |
Limitations |
In view of the results presented herein, our study does possess three possible limitations. One limitation may be the sample size. While a sample size of 24 is somewhat small, indeed it is notably larger than many other studies in the literature employing a very similar experimental design. We did perform an |
|
|
Based on the outcomes and limitations of the present study, it is clear that more research needs to be conducted on SizeOn Maximum Performance supplementation in humans regarding its ability to increase the activity and content of protein signaling intermediates involved in muscle protein synthesis, along with its potential ability to increase muscle strength, mass, and performance. However, based on the results of the current study we conclude that 42 days resistance training combined with SizeOn supplementation, at a daily dose of 50 g, does not increase the content of signaling intermediated indicative of MPS or total muscle and MHC protein content, nor does it preferentially increase skeletal muscle mass and strength in resistance-trained males when compared to an equivalent daily dose of a supplement containing protein, carbohydrate, and creatine. |
ACKNOWLEDGEMENTS |
The authors thank the individuals that participated as subjects in this study. Funding from this study came from a research grant from Gaspari Nutrition awarded to Baylor University. The authors declare that they have no competing interests. |
AUTHOR BIOGRAPHY |
|
REFERENCES |
|
Email link to this article