Arborelius M., Ballidin U.I., Lilja B., Lundgren C.E. (1972) Hemodynamic changes in man during immersion with the head above water. Aerospace Medicine 43, 592-598. |
Bangsbo J., Gunnarsson T.P., Wendell J., Nybo L., Thomassen M. (2009) Reduced volume and increased training intensity elevate muscle Na1-K1 pump {alpha}2-subunit expression as well as short- and long-term work capacity in humans. Journal of Applied Physiology 107, 1771-1780. |
Beneke R., Hütler M., Jung M., Leithäuser R.M. (2005) Modeling the blood lactate kinetics at maximal short-term exercise conditions in children, adolescents, and adults. Journal of Applied Physiology 99, 499-504. |
Bishop D.J. (2012) Fatigue during intermittent-sprint exercise. Clinical and Experimental Pharmacology and Physiology 39, 836-841. |
Buchheit M., Al Haddad H., Chivot A., Leprêtre P.M., Ahmaidi S., Laursen P.B. (2010) Effect of in- versus out-of-water recovery on repeated swimming sprint performance. European Journal of Applied Physiology 108, 321-327. |
Coffey V., Leveritt M., Gill N. (2004) Effect of recovery modality on 4- hour repeated treadmill running performance and changes in physiological variables. Journal of Science and Medicine in Sport 7, 1-10. |
Crowe M.J., O’Connor D., Rudd D. (2007) Cold water recovery reduces anaerobic performance. International Journal of Sport Medicine 28, 994-998. |
Buchheit M., Al Haddad H., Laursen P.B., Ahmaidi S. (2010) Effect of body posture on postexercise parasympathetic reactivation in men. Experimental Physiology 94, 795-804. |
Faude O., Meyer T., Scharhag J., Weins F., Urhausen A., Kindermann W. (2008) Volume vs. Intensity in the Training of Competitive Swimmers. International Journal of Sports Medicine 29, 906-912. |
Farhi L.E., Linnarsson D. (1977) Cardiopulmonary readjustment during graded submersion in water at 35°C. Respiratory Physiology 30, 35-50. |
Gabrielsen A., Videbaek R., Johansen L.B., Wardberg J., Christensen N.J., Pump B., Norsk P. (2000) Forearm vascular and endocrine responses to graded water immersion in humans. Acta Physiologica Scandinavica 169, 87-94. |
Gibala M.J., Little J.P., MacDonald M.J., Hawley J.A. (2012) Physiological adaptations to low-volume, high-intensity interval training in health and disease. Journal of Physiology 590, 1077-1084. |
Glaister M., Stone M.H., Stewart A.M., Hughes M., Moir G.L. (2004) The reliability and validity of fatigue measures during short-duration maximal-intensity intermittent cycling. Journal of Strength and Conditioning Research 18, 459-462. |
Iaia F.M., Bangsbo J. (2010) Speed endurance training is a powerful stimulus for physiological adaptations and performance improvements of athletes. Scandinavian Journal of Medicine and Science in Sports 20, 11-23. |
Iaia F.M., Perez-Gomez J., Thomassen M., Nordsborg N.B., Hellsten Y., Bangsbo J. (2010) Relationship between performance at different exercise intensities and skeletal muscle characteristics. Journal of Applied Physiology 110, 1555-1563. |
Iaia FM, Hellsten Y, Nielsen JJ, Fernström M, Sahlin K., Bangsbo J. (2009) Four weeks of speed endurance training reduces energy expenditure during exercise and maintains muscle oxidative capacity despite a reduction in training volume. Journal of Applied Physiology 106, 73-80. |
Iaia F.M., Thomassen M., Kolding H., Gunnarson T., Wendell J., Rostgaard T., Nordsborg N., Kustrup P., Nybo L., Hellsten Y., Bangsbo J. (2008) Reduced volume but increased training intensity elevates muscle Na+-K+ pump ±1-subunit and NHE1 expression as well as short-term work capacity in humans. American Journal of Physiology Regulatory Integrative and Comparative Physiology 294, R966-R974. |
Johansen L.B., Jensen T.U.S., Pump B., Norsk P. (1997) Contribution of abdomen and legs to central blood volume expansion in humans during immersion. Journal of Applied Physiology 83, 695-699. |
Kilen A., Larsson T.H., Jorgensen M., Johansen L., Jorgensen S., Nordsborg N.B. (2014) Effects of 12 weeks high-intensity & reduced-volume training in elite athletes. PLoS One 9, e95025-. |
Laursen P.B., Jenkins D.G. (2002) The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Medicine 32, 53-73. |
Maglischo E. (2003) Swimming fastest.. Champaign, IL. Human Kinetics. |
Nakamura K., Takahashi H., Shimai S., Tanaka M. (1996) Effects of immersion in tepid bath water on recovery from fatigue after sub- maximal exercise in man. Ergonomics 39, 257-266. |
Park K.S., Choi J.K., Park Y.S. (1999) Cardiovascular regulation during water immersion. Applied Human Science 18, 233-241. |
Parouty J., Al Haddad H., Quod M., Leprêtre P.M., Ahmaidi S., Buchheit M. (2010) Effect of cold water immersion on 100-m sprint performance in well-trained swimmers. European Journal of Applied Physiology 109, 483-490. |
Peiffer J.J., Abbis C.R., Watson G., Nosaka K., Laursen P.B. (2010) Effect of cold water immersion on repeated 1-km cycling performance in the heat. Journal of Science and Medicine in Sport 13, 112-116. |
Rüst C.A., Rosemann T., Knechtle B. (2014) Sex difference in age and performance in elite Swiss freestyle swimmers competing from 50m to 1,500m. Springerplus 6, 228-. |
Schniepp J., Campbell T.S., Powell K.L., Pincivero D.M. (2002) The effects of cold-water immersion on power output and heart rate in elite cyclists. Journal of Strength and Conditioning Research 16, 561-566. |
Smith T.P., Coombes J.S., Gerghty D.P. (2003) Optimising high-intensity treadmill training using the running speed at maximal O2 uptake and the time for which this can be maintained. European Journal of Applied Physiology 89, 337-343. |
Stepto N.K., Hawley J.A., Dennis S.C., Hopkins W.G. (1999) Effects of different interval-training programs on cycling time-trial performance. Medicine & Science in Sports & Exercise 31, 736-741. |
Takahashi T., Okada A., Saitoh T., Hayano I., Miyamoto Y. (2000) Difference in human cardiovascular response between upright and supine recovery from upright cycle exercise. European Journal of Applied Physiology 81, 233-239. |
Tejero-González C.M., Castro-Morera M., Balsalobre-Fernández C. (2012) The importance of effect size: A statistical example using physical condition measurements. Revista Internacional de Medicina y Ciencias de la Actividad Física y el Deporte 12, 715-727. |
Thomassen M., Christensen P.M., Gunnarsson T.P., Nybo L., Bangsbo J. (2010) Effect of 2 weeks intensified training and inactivity on muscle Na1/K1 pump expression, phospholemman (FXYD1) phosphorylation and performance in soccer players. Journal of Applied Physiology 108, 898-905. |
Tolfrey K., Amstrong N. (1995) Child-adult differences in whole blood lactate responses to incremental treadmill exercise. British Journal of Sports Medicine 29, 196-199. |
Vaile J., Halson S., Gill N., Dawson B. (2008) Effect of hydrotherapy on recovery from fatigue. International Journal of Sports Medicine 29, 539-544. |
Vincent W.J. (2005) Statistics in Kinesiology. Human Kinetics. |
Weston A.R., Myburgh K.H., Lindsay F.H., Dennis S.C., Noakes T.D., Hawley J.A. (1997) Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. European Journal Applied Physiology 75, 7-13. |
Wilcock I.M., Cronin J.B., Hing W.A. (2006) Physiological response to water immersion: a method for sport recovery?. Sports Medicine 36, 747-765. |
Yun S.H., Choi J.K., Park Y.S. (2004) Cardiovascular responses to head-out water immersion in Korean women breath-hold divers. Journal of Applied Physiology 91, 708-711. |
|