Based on previous research (Córdova et al., 2009), we hypothesised that the non-circular chainring would improve performance in BMX cycling by increasing the power outputs, the effectiveness of the applied force, or both, due to a probable more advantageous mechanical situation during the downstroke. The doubt was whether this advantage was related to the cyclist level. The main finding of the study was that the non-circular chainring actually improved performance during the starting sprint in the BMX cycling discipline, which supports our initial hypothesis; but this performance improvement was not related to better power outputs, and it was somewhat limited to the level of the riders (Elite group in our study). Indeed, the lower level cyclists developed significantly larger peak power outputs with the traditional circular chainring, and even when they exhibited better efficiency indices with the Q-ring, it was no enough to cover a larger distance. The non-circular chainring system appears to be able to alter power generation so that drive to the rear wheel can be improved despite lower average power output. This may allow a decreased time between the dead centres during the pedalling cycle. This can improve pedalling technique to a smoother cycling action that generates power more progressively. On one hand, this difference in the Cadet group could be mainly attributed to their lower ability to develop a high amount of propulsive torque during the downstroke with both chainrings (Table 2), which in turn causes the resultant instantaneous gearing to be too large for them, and further studies will be necessary to conclude that the OPC-38 suggested by the manufacturer is a too big gear ratio for the less skill BMX riders. This can be explained by the lower age (mean age = 15.6 years for the Cadet group vs. 23.2 years for the Elite group), and, more importantly, by the lower body mass of the Cadet group (mean body weight = 56.4 kg for the Cadet group vs. 77.8 kg for the Elite group), both significantly different, as shown in Table 1. When considering the non-circular chainring condition as an example, this showed a mean power/body mass ratio of 5.2 W·kg-1 for the Cadet group and 5.9 W·kg-1 for the Elite group, which undoubtedly diminishes the ability of the Cadet group to achieve a large propulsive torque during the downstroke. Our performance results (total distance and efficiency index) suggest that most powerful cyclists have been able to manage the increased load requirements produced by the non-circular chainring during the downstroke, while less powerful cyclists had more difficulties even though they have been able to move the circular chainring with the same number of teeth. As expected for a so brief period of time, nor lactate or heart rate showed any significant difference. The elite group performed higher lactates with the circular chainring, whilst the Cadet group performed higher lactate increases when using the Q-ring device, but it was no significant. Further studies should analyse the lactate production in longer distances, since lactate is related to strength and muscle mass. Based on these results, it appears that special attention needs to be paid when selecting the chainring or the optimum chainring position that will be used in competition. In agreement with other research we used position number two as a standard position to identify the optimum chainring (Rodríguez-Marroyo et al., 2009), although this might not be the best set up for each rider, as new studies have shown, being the OCP point 3 and 4, those who have obtained better results (Mateo-March et al., 2012b). Therefore, this aspect plays into the results of this study as making a better adjustment of the torque delivery point, possibly the performance gains are greater. On the other hand, another important issue when considering BMX races is that the small improvement in performance with the non-circular chainring in the Elite group (0.26 m with non-circular chainring) is relevant in these competitions because riders have to fight for the best position in front of the bunch during the first 20 m of the race. Increasing the total distance covered in the first 3.95 s by 0.26 m means a 1.12% improvement that might allow a rider to overtake the surrounding opponents at the first turn, lead the group without standing in the way, and be able to develop all the pedalling ability during the rest of the race. Therefore, those 0.26 m can become several metres at the finish line, which implies that this small numerical difference has a big practical significance (Atkinson, 2003). This is particularly relevant when the technical standard of the riders is higher because technical mistakes rarely occur. Thus, improving performance by using a different type of chainring has a very interesting cost-benefit ratio. The results show that the non-circular chainring system is able to improve performance, and this improvement could be attributed to the improvement of the pedalling technique when passing through the top and bottom dead centre points during the pedalling cycle, presumably stating that increased force production at the larger radius of the chainring could be the expected improvement in technique. This was reflected by the lower efficiency index values for the non-circular chainring compared to the circular chainring, both for Elite and Cadet groups, which in turn implies a better mechanical distribution of forces in the pedalling action. Accordingly, future research should analyse whether this practical improvement in sprinting performance is brought about by (1) a mechanical improvement in force application, (2) a difference in the muscle activity pattern required in the implied kinetic chains, (3) an improved muscular coordination during the pedalling cycle, or (4) a combination of some of them. A strong point of this study is that the sprint variables were assessed in a real setting, i.e. in an actual BMX racing track, thus accounting for features that cannot be reproduced in laboratory conditions, such as lateral oscillations of the bike (Bertucci et al., 2005) and aerodynamic resistance (Martin et al., 2007). Although some authors have not found differences between field and laboratory testing for maximum power and pedalling rate (Gardner et al., 2007), others found significant differences in the torque profile between road and laboratory pedalling conditions (Bertucci et al., 2007). Bearing in mind that force in BMX bicycles is applied in a very particular pattern due to a descending start and varied obstacles along the track, we believe that this issue deserves special consideration when testing BMX riders. One potential limitation of this study is that the cyclists involved in our study had no previous experience in pedalling with any kind of eccentric chainring, and therefore it could be argued that this may have somehow affected the results. However, previous studies found that the participants can become accustomed to pedalling with elliptic chainrings after 20 minutes (Hull et al., 1992) and that muscular coordination adaptation to different chainrings may occur during the first 10-20 pedal strokes (Neptune and Herzog 2000). Another limitation of this investigation is that only the initial acceleration phase, from the starting line to the start of the second obstacle, was measured, as this is of paramount importance in BMX final performance. Even though there was an improvement of 0.26 m in the first 23 m of the track, it has to be determined whether the cyclists would be able to maintain that speed for the rest of the race. Indeed a hypothetical loss in power output during the second part of the race due to the non-circular chainring might occur, although previous research showed no differences in a Wingate test of similar duration between non-circular and circular chainrings (Córdova et al., 2009). Even if a reduction in power output occurred, the faster start (and therefore the better position in the bunch) would most likely compensate for it. |