The validation and assessment of a measuring system such as TWAS is achieved by comparing it with another system that takes into consideration the same variables to be tested (Rahmani et al., 2000). On the other hand, measurements obtained with these devices must be based on criteria of consistency or agreement with one or more measuring systems, for which a variance analysis is recommended. Such an analysis provides ICCs, which analyze inter-subject and inter-observer variability and the residual error (Bartko, 1966). One of the main findings of our study was strong correlation between measurements obtained by both systems. As observed in Table 2, only the ICC for PP in the BS exercise was below 0.900 (0.853); all other variables were above this value. In the scientific literature, ICCs above 0.900 are described as very good, and values between 0.710 and 0.900 as good (Bartko, 1966). Another relevant aspect is the strong relative validation found between both kinematic measuring systems, similar to data reported in previous studies (Crewther et al., 2011; Cronin et al., 2004; Drinkwater et al., 2007; Thompson and Bemben, 1999), particularly during isoinertial exercises (i.e., squats, squat jumps, bench press). Further, low systematic differences were observed, with average estimates of 2% for AV, 5.96% for PV and more pronounced in the case of PP, with a value of 23.41%. There is reasonable agreement between our results and those of other studies conducted with accelerometers (Crewther et al., 2011; Thompson and Bemben, 1999) and linear position transducers (Crewther et al., 2011; Cormie et al., 2007b; Hori et al., 2007). The first aspect to be analyzed is whether the level of systematic error is uniform with respect to the range of observed measurements (Atkinson et al., 2005). By applying a regression analysis to the sample population of average values measured and the differences between both methods, we could see that the slope of the line was close to and not significantly different from zero (horizontal to x-axis) for the variable AP. Therefore, we assumed that the slight systematic error between both methods was consistent and independent of the sample of measured values. However, for the rest of variables studied, the systematic error increased as the measured values increased (Atkinson et al., 2005), and thus we considered AV and PV to show a low to moderate systematic error and PP an excessive error (Figure 4). Having defined the nature and magnitude of the systematic error, we analyzed random errors between both methods (Atkinson et al., 2005). By analyzing the Bland Altman plots we observed large random errors in PP (Figure 4), while errors were low to moderate for all other variables (AV, AP and PV). Since random errors vary according to the sample examined, we consider that these errors tend to be proportional or heteroscedastistic. This observation was more pronounced for the variable PP. Thus, we may assume that random errors were uniform and dependent of the set of measured values. It is worth considering the presence of significant proportional biases in almost all variables, except for PV in the BS exercise. This has been commonly observed in assessments conducted in sports science (Atkinson and Nevill, 1998). The issue of proportional bias could be partially resolved with logarithmic data transformation (Bland and Altman, 2003) (not shown). We must consider that the measurement bias can be detected using linear regression models, but that discussion is beyond the scope of this paper (Hopkins et al., 2009; Ludbrook, 2002). Although TWAS and TFDMS have different sampling frequencies, we consider that these differences could be due to the unequal accelerations and velocities of both devices, leading to an error in data acquisition and consequently in the interpretation of the estimation curves (Wood, 1982). On the other hand, some limitations in this type of study are due to the sole contribution of kinematic data, without consideration of the body movement produced independently of the bar (Cormie et al., 2007a; McBride et al., 2011; Lake et al., 2012). For example, it is important to consider than in BS exercise may be material differences among the velocity of the barbell and body segment center of mass (CM). Lake et al. (2012) demonstrated as the mean and peak velocity of the bar overestimates the mean and peak velocity of the CM (≈ 21% and 14% of mean of CM in the trunk and upper leg, respectively) and hence, the power applied to the CM. Other studies have indicated that methods that depend only on kinematic and kinetic results have limitations when used to determine power output (Cormie et al., 2007b; Hori et al. 2007). It seems that the linear position transducer technique overestimates power due to increased force output production derived from double differentiation of bar displacement. When this technique is applied also to the mass of the subject, standard biomechanical procedures are rejected in that force is determined without considering the acceleration produced through a movement (Dugan et al., 2004). Despite this limitation, our results indicate that monitoring bar velocity is a useful procedure to control load intensity in resistance exercises, as observed by other authors (Hori et al., 2007; McBride et al., 2011) We propose that the tendency of error decrease is conditioned by the more elevated loads (closer to the 1RM) used in the exercises with a slower movement velocity. Another interesting consideration is related to the technical execution of the exercises performed. We feel that BS exercises involve greater difficulty in their technical execution and therefore we believe this aspect favours the error increase in the measurements. Following the aforementioned criteria, the reliability of the different parameters of velocity and power was determined for TWAS through the calculation of ICCs (relative reliability) (Weir, 2005) and variation coefficients (absolute reliability) (Thompson and Bemben, 1999; Weir, 2005). For the BS and BP exercises, ICCs were high, above 0.920 (Bartko, 1966). We recorded higher or similar ICCs than those reported in other studies respectively (Jennings et al., 2005; Stock et al., 2011), considering that these studies involved free weight exercises. Prior investigations have assessed test-retest ICCs using power data (power output) in curl biceps and squat jump exercises (Jennings et al., 2005), movement velocity data in squat jump and bench throws (Alamany et al., 2005), and peak movement velocity data for different intensities (low, medium and high) in BP (Stock et al., 2011). However, only some have evaluated test-retest ICCs of all variables (PV, AV, PP and AP) using light, medium and high loads in two exercises of upper (BP) and lower extremities (BS). Regarding the coefficient of variation, the scientific literature suggests it should be under 10%, although these estimates have been a source of discrepancy (Atkinson and Nevill, 1998; Cronin et al., 2004). The CVs obtained here (range: 8.5-13.1) suggest adequate absolute reliability in some of the variables (Thompson and Bemben, 1999; Weir, 2005). On the whole, minimal systematic differences were detected between session 1 and 2 with values of 1.28% for AV, 2.42% for PV, 1.29% for AP and 3.59% for PP. In effect, as may be noted in Table 3, our test-retest results showed slight improvement in all the velocity and power measurements. According to the guidelines of the analysis carried out in the validation study, we consider that the small error between both measurements carried out for AV, AP and PV (in BP) was consistent and independent of the set of measured values. However, in the case of PV and PP, the systematic error increased as the measured values increased (Atkinson et al., 2005), and was thus considered a moderate error. We consider that this tendency in the systematic bias could be due to the improved technical execution of the exercises from one session to the next. These errors could be ascribed to the different biological and mechanical conditions of subjects in the different sessions separated by one week (Atkinson and Nevill, 1998). Random errors were relatively moderate in PV (BS) and PP, and lower in the rest of the variables AV, AP and PV (BP). Despite the fact that many of the results obtained were not significant, we believe that there was a slight tendency in random errors to be proportional or heteroscedastistic (Atkinson and Nevill, 1998). Only the PV variable in the BS exercise revealed a significant proportional bias. Another point to consider in this type of study is the number of participants, since this may influence interpretation of the Bland-Altman plots and the statistical power of results. According to an interesting review of gas analysis systems, 40 subjects are needed for this type of study (Atkinson et al., 2005). The limitations of our reliability study include the low number of participants, however, we consider the large number of data corresponding to several loads (light, moderate and heavy) were analyzed, making it reliable to assess the uniformity or absence of random error in all variables. Another limitation possibly affecting the reliability of measurements was the experience participants had with the protocols and their training status. The main findings of the present study were the adequate concurrent validity and high test-retest reliability of the TWAS system. Despite the detection of systematic and proportional biases as well as random errors in some measurements, this tool emerged as useful for training and performance monitoring and assessment. |