Research article - (2015)14, 203 - 214 |
Reliability and Accuracy of Six Hand-Held Blood Lactate Analysers |
Jacinta M. Bonaventura1, Ken Sharpe2, Emma Knight3, Kate L. Fuller1, Rebecca K. Tanner1, Christopher J. Gore1,4, |
Key words: Bias, precision, root mean squared error, analytical performance |
Key Points |
|
|
|
Subjects |
Three male and two female recreationally active staff members (age = 25 ± 1.8 years, height = 1.74 ± 0.13 m and body mass = 73.2 ± 16.9 kg) from the Australian Institute of Sport Physiology Discipline were recruited to participate in the study. All subjects were healthy and engaged regularly in ≥ 120 minutes of physical activity per week. They each signed an informed consent form prior to commencement of the study, which was approved by the Ethics Committee of the Australian Institute of Sport. |
Lactate analysers |
Five portable BLa analysers (Lactate Pro, Lactate Pro2, Lactate Scout+, StatStrip® Xpress™ Meter and The Edge) and one point-of-care analyser (i-STAT) were evaluated concurrently against a criterion blood analyser (Model ABL90, Radiometer, Copenhagen, Denmark). A second laboratory analyser (Model ABL715, Radiometer, Copenhagen, Denmark) was also used for a small number of comparisons to the ABL90, since the ABL715 has been used as a criterion in two previous evaluations of portable lactate analysers (Pyne et al., The Radiometer ABL90 (Radiometer, Copenhagen, Denmark) operates using an amperometric metabolite sensor involving two electrodes and one anode covered by a multi-layer membrane bound to the sensor board. The lactate concentration in a sample is calculated by measuring the amount of electrical current flowing through the electrode chain, which is proportionate to the concentration of lactate being oxidised. The same measurement methodology is employed in the previous-generation ABL-700 and -800 series analysers. The ABL90 is traceable to primary standards at Radiometer (Copenhagen, Denmark) and according to its operating manual has a bias of 0.02 mM at 0.17 mM and 0.03 at 12.50 mM. Multiple metabolite sensors are housed in a compact cassette form with automated calibration and quality control procedures. The ABL90 requires a 65 µL blood sample. The measuring time is 35 s and the full analysis cycle including rinsing is 65 s. It is for these reasons the ABL90 was chosen over previous models that require larger sample volume and longer analysis time. |
Experimental design |
A nested repeated measures study design was employed using ~6 mL venous blood samples taken from each of five subjects at rest, as well as during four to six levels of treadmill exercise. A total of 22 blood samples were obtained; four samples from each of four subjects and six samples from one subject. Each blood sample was aliquotted into 11 capillary tubes that were analysed repeatedly (~4-6 replicates) on one of the eight different lactate analysers. Finally, two devices of each of the six portable/point-of-care analysers were assessed concurrently. Subjects were prepared with a 21 g cannula (Jelco, Smiths Medical, Southington, USA) inserted into a forearm vein to enable blood to be drawn at selected times using a 6 mL sodium heparin Vacutainer (Greiner Bio-One – Kremsmünster, Austria). To obtain lactate values across the physiological range, blood samples were drawn at rest as well as after subjects had completed multiple 5-minute treadmill workloads designed to elicit lactate concentrations that could be classified as low (0.5 – 4 mM), moderate (>4-<8 mM) and high (>8 mM). As such, treadmill workloads were individualised to each subject; after five minutes at each nominated workload a finger-prick lactate sample was taken to assess if the target lactate concentration (via Lactate Pro) had been achieved, if not, exercise recommenced at the same speed with 1% increases in gradient each minute thereafter until the target range was reached. After each 6 mL blood sample was drawn, the Vacutainer was mixed thoroughly by hand and aliquotted promptly into eleven 100 µL balanced heparin capillary tubes to ensure all samples were of a consistent lactate concentration. The eleven capillary tubes were filled simultaneously in groups of two or three and all eleven tubes were filled in ~ 80 s. The capillary tubes of each blood sample were distributed to the researchers in random order to minimise any order and time effects. Blood collection and processing were conducted in the laboratory at 22-24 oC and at 26-41% relative humidity. Seven researchers were used to run blood samples through the different brands of analysers concurrently, to minimise the change in lactate over time in vitro (Jones et al., |
Statistical analysis |
Although the treadmill workloads were designed to elicit lactate concentrations that could be classified as low, moderate and high, analysis was conducted with the concentrations in five bands as follows 0-1.9, 2.0-4.9, 5.0-9.9, 10.0-14.9 and >15.0 mM. Given that the within-sample variability of the data increased as the mean increased, consideration was given to transforming the data using logs. Taking the square-root of the MSE provides a measure that has the same units as the within-sample SD and the bias; for the untransformed data the units are (all) mM. All of the larger values of MSE were found to be associated with larger values of the bias, rather than larger values of the within-sample SD, so it might be possible to improve matters by reducing the bias. A simple way to do this is to fit a linear regression of Radiometer ABL90 values on the values obtained with one of the other analysers, and then to use this relationship to predict the Radiometer ABL90 reading using the reading on the other analyser. This concept of correcting for bias was assessed using the Edge analysers as an example. Linear regressions of Radiometer ABL90 data on Edge were fitted separately for the two Edge analysers (device A and B). These equations were then applied to both the EdgeA and EdgeB data, and revised biases calculated for each sample. The idea behind using the formulae obtained using the EdgeB data on the EdgeA data is that it is likely to be a better indication of how the formulae might work on future data. |
|
|
This study design generated 1384 measurements of blood lactate ( |
Transformations |
An inspection of the data clearly showed that the within-sample variability increased as the sample mean increased. This is typical for such data and often results in the use of a transformation to produce, approximate, constant variability. The transformation most commonly used is the log transformation, which will result in constant variance in situations where the coefficient of variation (CV) is constant. Here, while the log transformation did result in reasonably constant variation for samples with larger lactate values, the variability of the transformed data for samples with small values (lactate < 2 mM) was considerably greater than that for the other concentration bands. This was possibly due, in part, to the fact that lactate readings are only recorded to one decimal place, and whereas a difference of 0.1 represents only a 1% change for values around 10, it represents a 10% change for values around 1. Qualitatively the results obtained with and without transforming the data were very similar and, for ease of interpretation, only the results obtained using the untransformed data are reported here. |
Blood lactate stability over time |
A change in lactate concentration over time for serial measures on the same blood sample was not consistently observed; the slope was estimated separately for each device for each blood sample, with samples measured an average of 5.5 times (range 2 to 7, median 6). Of the 262 individual slopes that were estimated, 25 were statistically significant (p < 0.05), of which seven were positive and 18 were negative ( |
Reliability and bias |
For each of the (up to) 22 samples, plots of the within-sample standard deviation versus the estimated bias (from the criterion Radiometer ABL90 readings), are given in All portable analysers except the i-STAT analyser showed mostly negative biases with the greatest bias seen when the BLa concentration was >15 mM ( |
√Mean Squared Error and correction for Bias | |
The √MSE indicated that both the Edge and Xpress had low ‘total’ error (~0-2 mM) for lactate concentrations <15 mM ( The regression equations to correct the Edge for bias were:
With the possible exception of lactate values in the range 10-14.9, use of these regressions reduced the bias of the Edge devices throughout the measurement range, and especially for the two extreme bands; from a mean of ~0.5 mM to 0.1 mM at lactate concentrations of 0-1.9 mM and from a mean of ~–2 mM to –0.5 mM at lactate concentrations >15 mM ( |
Between-device within-brand variation |
There was generally very good agreement between the two devices of the same brand regardless of lactate concentration with many of between-device standard deviations estimated to be zero (to two decimal places) and few in excess of 0.1 mM, which is the precision to which lactate values are recorded ( |
Analytical variation |
The analytical error, which is essentially the measurement error for a random sample at a random time after collection, ranged from ~0.2-0.4 mM for all brands, but was 0.5 mM for the Xpress (‘All’ column of |
Practical implications |
Using representative cycling data, small differences of -2 to +5 W between the criterion (Radiometer ABL90) and each analyser were apparent at LT1. But at LT2 most analysers showed zero difference in power except the Xpress meter, which read 23 W below the criterion and the i-STAT which read 4 W above the criterion ( |
|
|
The results of the current study indicate that no single portable analyser is both highly accurate and reliable throughout the range of ~1-23 mM; although most pairs of analysers of the same brand were in close agreement with each other, which supports the practice of interchanging different analysers of the same brand between testing sessions. Two portable analysers, specifically the Edge and Xpress, have low ‘total error’ (as assessed by the √MSE) for BLa values in the range of ~1-15 mM, while the Edge and Lactate Pro2 have low √MSE for values in the range of ~15-23 mM. The i-STAT point-of-care hand-held analyser has very low √MSE throughout the measurement range of ~1-23 mM, but with relatively long analysis time. Ultimately, the ideal portable analyser will depend upon the end user requirements since, in a clinical setting, the ability to measure very high concentrations of BLa may not be as important as for those working with elite athletes. |
Blood lactate stability over time |
Previous research using resting blood samples has noted progressive increase in lactate over time for blood samples stored in vitro at room temperature (Calatayud and Tenias., In the current study, the high concentrations of BLa were derived from exercise blood samples, and therefore are associated with lower blood pH, where acidity has been shown to attenuate red blood cell metabolic activity (Bennett-Guerrero et al., |
Reliability and analytical variation |
The within-sample standard deviations (reliability) of the five portable analysers were generally <0.5 mM for concentrations in the range of ~1.0-10 mM ( The reliability (a combination of both biological variation and analytical error) of BLa measures during submaximal exercise testing is reported as 52, 21 and 11% at mean BLa concentrations of ~2.0, 2.7 and 5.2 mM, respectively (Saunders et al., Where comparisons were possible to previously published studies or to the manufacturer’s specifications, our results for analytical error within a brand ( |
Accuracy/bias |
There was a tendency for all portable analysers to under-read the same time-matched sample analysed by the Radiometer ABL90, which was particularly evident at the highest concentrations (BLa ~15-23 mM). However, both the Edge and the Lactate Pro2 had a small positive bias for resting concentrations (BLa ~1.0-2.0 mM). Biases could possibly be explained by differences in analysis methodology between lab-based and portable analysers, and further influenced by the proprietary manufacturer algorithms used to convert voltage to BLa for their respective amperometric methods. The small bias of the Xpress analyser at concentrations under 15 mM ( The possibility of adjusting for bias via the use of a simple linear regression model was examined for the Edge data and resulted in appreciable improvements in bias at both the lowest (1-2 mM) and highest (15-23 mM) BLa concentrations ( The Radiometer ABL90 is a cassette-operated analyser for use in small labs and, although it employs the same analysis methodology as the ABL-700 and -800 series, it is less frequently used in research studies on athletes. A comparison between the two Radiometer analysers involving only six blood samples (each measured ~ 3-5 times) was performed as part of the current study and the mean bias was zero for the ABL715 versus the ABL90. These results suggest that blood lactate data from Radiometer ABL90 are comparable to that of Radiometer 715 and that these models of Radiometer analysers can be used interchangeably. This finding of nil bias between Radiometer analysers facilitates comparison of the current performance of Lactate Pro with previous research, which also shows a tendency of the Lactate Pro to under read the criterion laboratory Radiometer analyser (Pyne et al., An interesting observation of our data ( |
√Mean squared error |
We have used root Mean Squared Error to combine both reliability and bias to assist with decision making about the ‘best’ portable analyser ( It is well established that low total error (that is, good accuracy and reliability) of analysers is most important for BLa concentrations between 0 and 8 mM, for the derivation of lactate thresholds, identification of metabolic efficiency and buffering capacity, and the prescription of training intensity (Beneke et al., |
Between-device within-brand variation |
Estimates of the between-device within-brand standard deviations show that interchanging two units of the one brand is likely acceptable, with the exception of the Lactate Pro. However, given that only two devices of each brand were assessed, the between-devices variability is poorly estimated with estimates having only one degree of freedom. Six devices of the same brand would be needed to obtain a reasonable estimate of the between-devices variation. A priori, one would anticipate that the variation between two factory-manufactured devices should be small, but our results for the Lactate Pro suggest that a prudent scientist would use the exact same unit of any particular brand of analyser for all of their blood lactate measurements on an individual athlete, and/or conduct regular between devices comparisons to ensure correct calibrations. Our estimate of the variation between one Radiometer ABL90 and one Radiometer ABL715 analyser also showed very close agreement ( In general terms, our results quantifying the imprecision between two Lactate Pro devices ( |
Practical implications |
For cycling, the ADAPT calculations of training zones were unaffected by the biases of the different brands of analysers except for the Xpress and i-STAT analysers ( |
Limitations |
This investigation was a laboratory-based comparison using cannula-derived venous blood samples performed under controlled environmental conditions. Use in the field, using finger prick/earlobe blood sampling may produce slightly different results. |
|
|
Since biological variation of blood lactate concentrations swamps analytical variation, our results suggest that any of the evaluated analysers could be used over time to reliably derive BLa thresholds and prescribe training intensities within an individual, and that analysers from the same manufacturer can be used interchangeably to do so. With regards to accuracy, no single portable analyser was perfect; however the Edge and Xpress analysers each had low bias for BLa <15 mM, whereas the Edge and Lactate Pro2 had relatively low bias for high lactate concentrations which can be particularly influential for training zone prescription. |
ACKNOWLEDGEMENTS |
We gratefully acknowledge the assistance of the National Sport Science Quality Assurance Program. |
AUTHOR BIOGRAPHY |
|
REFERENCES |
|