The main findings of the present study demonstrate that the S-index provided by the POWERbreathe® is “acceptably” reliable (Cardinet et al., 2011). However, the POWERbreathe® S-index is not an equivalent measure of MIP when obtained during the gold-standard test, the Mueller maneuver. In addition to these findings, it is reported that repeated-sprint cycling does not induce globalized inspiratory muscle fatigue in recreationally-active men and women. The measurement of MIP during the Mueller maneuver yielded an ICC of 0.95 indicating “almost perfect” reliability. These findings are consistent with the results of Dimitriadis et al. (2011) who reported excellent reliability of a handheld manometer (ICC > 0.90). The MIP values recorded during the Mueller maneuver for men and women in the present study (mean 109, sd = 27 cmH2O) were similar to the values previously reported in a meta-analysis by Sclauser et al. (2013) for men (approx. 116-140 cmH2O) and women (approx. 88-105 cmH2O). The S-index measured using the POWERbreathe® inspiratory muscle trainer for seven recreationally-active individuals did not change across six trials, and there was no change in the ICC value when calculated for the first two trials (r = 0.87) compared with the value calculated for all six trials (r = 0.88). Furthermore, we established that the S-index could be measured reliably on separate days (r = 0.90). We conclude that the S-Index measured by the POWERbreathe® can be obtained from young, recreationally-active men and women with good trial-to-trial and day-to-day reliability. The day-to-day reliability reported for the S-Index using the POWERbreathe® in the present study (6.7%) is similar to typical error values reported in previous studies that have investigated the reliability of power in physical performance tests (3.1 – 7.3%; Hopkins et al., 2001). An increase in MIP of ~24% has been reported for recreationally-active men and women (aged 22-40 yr) after 10 wk of respiratory muscle training (Aldrich and Spiro, 1995). The present study suggests that smaller changes in the S-Index measured before and after an intervention could be considered “worthwhile” (as defined by Hopkins, 2004) given the typical error value of 6.7% reported here for day-to-day reliability. For example, an increase in the S-Index of 3.35% (i.e., half the typical error), or about 3.5 cmH2O, measured after respiratory muscle training would allow coaches to be “reasonably confident of a worthwhile change” (Hopkins, 2004). Equally, coaches could assume that a 3.5 cmH2O decrease in the S-Index measured after intense exercise indicates respiratory muscle fatigue. Nevertheless, it should be noted that this error value was derived from a small group of subjects and therefore no firm conclusions can be drawn in relation to real changes in respiratory muscle strength using the POWERbreathe® respiratory muscle trainer. Various methods are used to measure maximal respiratory mouth pressure and aside from the subjects themselves, values for MIP will inherently vary due to numerous variables including: the chosen device and technique, trial duration, definition of maximum pressure, type of mouth piece and pressure gauge, etc. (Evans and Whitelaw, 2009; Green et al., 2002). Nonetheless, maximal static respiratory pressures generated at the mouth after full expiration (i.e., Mueller maneuver) is the most widely used method of measuring MIP (McConnell and Copesake, 1999; Sclauser et al., 2013) and has been considered as a useful voluntary test of respiratory muscle strength (Green et al., 2002). There are no previous data indicating whether the S-Index determined by a POWERbreathe® during maximal dynamic inspiration is equivalent to the MIP obtained during a Mueller maneuver in humans. The correlation coefficient and the mean difference plot presented in Figure 2 shows that the S-index and MIP are not linearly related, nor do these measurements exhibit an appreciable level of absolute agreement (Altman and Bland, 1983). Before concluding that the S-Index determined by the POWERbreathe® is invalid, one should consider the distinct difference between the muscle function qualities being tested during the Mueller maneuver compared to the dynamic contraction of the respiratory muscle using the POWERbreathe® (Baker et al., 1994). The POWERbreathe® demands a rapid and powerful dynamic contraction of the respiratory muscles (i.e., specific muscle function) whereas the inspiratory maneuver made during the Mueller maneuver is against a totally blocked airway and is therefore isometric (i.e., general muscle function). This distinction may help to explain both the absolute difference in the mean values, as well as the disagreement across the range of values measured. Furthermore, the small sample size in the present study should be considered as a limitation to the correlational analysis. Previous studies have examined the relationship between isometric and dynamic muscle strength in skeletal muscle groups. Murphy and Wilson (1996) reported that isometric strength of the upper-limbs was a poor predictor of dynamic strength in the same muscle groups. They further illustrated that there are significant differences in the muscles’ neural activation patterns during isometric compared to dynamic contractions. Mechanisms that contribute to dynamic strength maybe unrelated to the mechanisms that contribute to isometric strength. Consequently, if respiratory muscle strength is contraction specific, this calls into question the efficacy of using the S-Index measured during a dynamic contraction to estimate MIP during a Mueller maneuver. Therefore, the two methods of respiratory muscle strength measurement in the present study are not comparable; that is, the S-Index measured using the POWERbreathe® cannot replace MIP measured during a Mueller maneuver with sufficient accuracy. We found no change in the S-Index measured using the POWERbreathe® after compared to before repeated-sprint cycling. This result was confirmed by measuring MIP before and after sprinting during a Mueller maneuver. Although respiratory muscle fatigue has been observed after short-term continuous maximal exercise (Coast et al., 1990), it is reasonable to suggest that the intermittent nature of repeated sprinting provides sufficient time for the respiratory muscles to remove fatigue-inducing metabolites and recover oxygen debt. This notion is supported by McKenzie et al. (1991) who demonstrated that the diaphragm has a significantly increased ability to recover from fatigue when compared to other muscle groups. Although respiratory muscle fatigue was not demonstrated after repeated-sprint cycling in the present study, Romer et al. (2002) suggests that IMT might be warranted given the evidence that IMT improved recovery time and reduced blood lactate concentration during repeated-sprint running in team-sport athletes. Therefore, additional research is required to explore the efficacy of using IMT to improve RSA. It should also be noted that although reporting a “recreational” level of physical activity, peak aerobic power was not measured in the present study. Therefore, it is possible that some of the subjects were more than recreationally-active and this is why the sprint protocol was unsuccessful in inducing inspiratory-muscle fatigue. The ability to measure global respiratory muscle strength reliably using a POWERbreathe® K5 device enables coaches and sport scientists to conveniently: i. Monitor changes in global respiratory muscle strength as a result of an exercise session or in response to training, ii. Establish a goal for a respiratory muscle training program, and iii. Establish normative values for global respiratory muscle strength specific to the POWERbreathe® device; all of which can be performed in the field. The change in mean and typical error values reported for the S-Index in the present study will allow coaches and Sport Scientists to identify physiologically meaningful changes in respiratory muscle strength. Furthermore, if the intended purpose of measurement is noted e.g., respiratory muscle strength during a dynamic inspiratory maneuver, the POWERbreathe® can provide a reliable measure of respiratory muscle strength. It is also suggested that when determining the maximal values of repeated efforts, the relative variability that should be accepted could be reduced from 20% (Green et al., 2002) to 10%. |