We investigated the evolution and stability of anthropometry and YYIR1-performance of 42 high-level, pubertal soccer players with high, average and low YYIR1 baseline performances over two and four years. Also, two- and four-year stability of anthropometrical characteristics and YYIR1 performance was examined. The main finding was that after two and four years, the magnitudes of the differences at baseline were reduced, although players with high YYIR1 baseline performance still covered the highest distance up until 16 years. Furthermore, the YYIR1 showed a high stability over two years (ICC = 0.76) and a moderate stability over four years (ICC = 0.59). Anthropometry showed very high stability (ICCs between 0.94 to 0.97) over a two-year period, in contrast to a moderate stability (ICCs between 0.57 and 0.75) over four years. These findings indicate that YYIR1 performance together with anthropometrical characteristics should be evaluated over time, with emphasis on individual development (and comparison with benchmarks). The present YYIR1 results showed the high level of intermittent-endurance capacity when compared with 16 elite youth soccer players, aged 17 years (2150 ± 327 m; Rampinini et al., 2008), Croatian elite youth soccer players (U13: 933 ± 241 m, U17: 1581 ± 390 m; Markovic and Mikulic, 2011), and 21 youth soccer players from San Marino, aged 14 years (842 ± 352 m; Castagna et al., 2009). A reasonable explanation could be that the present sample of youth soccer players is subjected to training stimuli that focus greatly on the development of intermittent-endurance capacity therefore explaining the high level of YYIR1 performances. Consequently, the present data could serve as reference values or standards for other youth soccer samples in high-level soccer development programs. Considering the differences in YYIR1 results between the three performance groups at baseline, these large discrepancies in performance decreased over time, especially between the low and high performance groups. For example, the difference at baseline between low and high was 800 m (ES = 5.12) corresponding to 20 YYIR1 running bouts, whilst four years later, the difference decreased to 308 m (ES = 1.05), which corresponds to approximately 8 running bouts. A similar trend was noticeable over a two-year period although less distinct: the difference in YYIR1 performance between low and high at baseline was 828 m (ES = 6.86) and diminished to 726 m (ES = 3.32), corresponding to approximately 21 and 18 running bouts, respectively. Also, the higher performance groups continued to perform better than the lower performance groups within each subsample. Indeed, within the two-year follow-up period, the highest baseline performance group continued to improve their YYIR1 performance with a higher rate compared with the lowest baseline performance group (263 m/y vs. 212 m/y, respectively). In contrast, in the four-year follow-up period, the lowest baseline performance group progressed with a higher rate compared to the highest baseline performance group (356 m/y vs. 233 m/y, respectively). These results indicate that during the pubertal years (i.e., 11 to 16 y), high-level soccer players with a relatively low intermittent-endurance capacity have the potential to improve their YYIR1 performance up to the average level of their peers. The greater improvement of players from the lowest baseline performance group (up to 235.7 % over a four-year period) compared with average (up to 86.8 %) and high (up to 62.2 %) performance groups, might reveal their potential to eventually catch-up or close the gap with the better performers on the long term although no longitudinal data were available after the age of 16 years. Moreover, Hill-Haas and colleagues (2009) investigated the effect of implementing small-sided game versus mixed generic training on several physiological parameters during seven weeks in pre-season in 19 elite youth soccer players, aged 14 years. Both training groups improved their YYIR1 performance after seven weeks: the small-sided training group ran 254 m further (from 1488 m to 1742 m; + 16.9 %), whilst the mixed generic training group improved their performance with 387 m (from 1764 m to 2151 m; + 21.7 %). The latter results showed that both training groups were capable to quickly improve their aerobic fitness level, although baseline and outcome differences between both training groups were still apparent. The highest improvement in both subsamples occurred around the timing of peak height velocity (when players moved from pre- to post-peak height velocity) (Table 3). This is in accordance with the results of a longitudinal study by Philippaerts et al. (2006) where the highest increase in cardiorespiratory endurance coincident with the timing of peak height velocity. An investigation by Malina & Bailey (1986) already indicated that maximal gains in peak oxygen occurred around peak height velocity timing and that continued improvement was observed during the late adolescence. Future research should extend this longitudinal approach into young adulthood (after 16 years) to examine if low performers eventually catch-up with their initially higher performing counterparts. The differences in YYIR1 performances at baseline between low and high performance groups seem not to be influenced by body size and maturational status since in both subsamples, the highest performers were the smallest, leanest and furthest away from peak height velocity (i.e., in the two-year period: 152.8 cm, 40.5 kg and -1.20 y, respectively) compared with the lowest performers (i.e., 158.4 cm, 48.2 kg and -0.76 y, respectively). A related study in 143 Portuguese young soccer players (11-14 years) showed that body mass was disadvantageous for the YYIR1 performance (Figueiredo et al., 2011). Therefore, anthropometrical characteristics and maturational status cannot explain these baseline differences, although several studies have shown that soccer players with increased body size dimensions and biological maturity perform better in speed, power and strength, especially during pubertal years (Carling et al., 2009; Figueiredo et al., 2009; Malina et al., 2004; Vaeyens et al., 2006). Moreover, another study investigating anthropometrical characteristics, skeletal age and physiological parameters among 159 Portuguese elite youth soccer players, aged 11-14 years, showed that late maturing soccer players had a higher intermittent endurance compared with early maturing peers (Figueiredo et al., 2009). Also, a study by Deprez et al. (2012) reported that the maturational status had a relatively small influence on the YYIR1, since selection procedures focus on the formation of homogenous groups in terms of anthropometry and biological maturation. Additionally, a study by Segers et al. (2008) stated that running style plays an important role in the running economy of late maturing soccer players, and therefore the latter can succeed in keeping up with early maturing soccer players. Other possible factors including training volume, experience, quality of training and field position might influence the large range of YYIR1 performance in each subsample and the lack of this information on these potentially confounding variables is a limitation of the present study. Nevertheless, all players in the present study performed the same training program. The present results revealed high stability (ICC’s: 0.90-0.94) of anthropometrical characteristics and maturational status over a two-year period. In contrast however, a poorer, although high (ICC = 0.76) stability in YYIR1 was apparent in the latter subsample despite similar changes in anthropometrical characteristics and maturational status. In contrast with the very high stability of anthropometrical characteristics and maturational status over a two-year period, moderate stability in both anthropometry and maturational status was observed over the long-term (four-year period). This result possibly indicates the large inter-individual differences in growth and maturation of pubertal children (Malina et al., 1994), despite the homogeneity in terms of anthropometry and maturational status in elite youth soccer players around peak height velocity (Deprez et al., 2012). Indeed, additional analyses revealed that 47.6 % and 28.2 % of the players were moving to a higher or lower percentile group on the long-term for stature and maturational status, respectively. Additionally, 47.6 % of the players were moving to a higher or lower YYIR1 performance group, also resulting in moderate stability over a four-year period (ICC = 0.59). For example, 12-year-old players with the highest high-intensity intermittent-performance might not remain the best when they reach the age of 16 years. This point is in agreement with poor long-term stability observed in a general sporting population over a year (Abbott and Collins, 2002). Indeed, a review by Vaeyens et al. (2008) discussed the unstable non-linear development of performance determinants, making one-shot long-term predictions unreliable. The fact that some players were able to greatly improve their YYIR1 performance (e.g., one player went from 1280 m to 2360 m over two years), lends support to individual interventions to develop high-intensity intermittent running performance. The present study has its limitations. First, we found a large variation in rank scores of the players regarding anthropometrical characteristics and YYIR1 performance over a four-year period. However, within such a limited group of players (n = 7), small changes in ranking are responsible for large changes in ICCs. Therefore, we expected the overall ICCs to be larger than within each performance group, which reflects more the reality of a young soccer team which includes players of different performance levels at the same time. Furthermore, longitudinal studies on a larger sample size and after 16 years of age, accounting for individual training contents are warranted to draw definite conclusions. Also, caution is warranted when using maturity offset as an estimation of biological maturation. According to Mirwald et al. (2002), the equation is appropriate for children between 9.8 and 16.8 years, although it appears that the estimation is more accurate in the middle of this range. Since players in the present study matched the latter age-range and players were only compared within the same age group, these limitations of the predictive equation were restrained and the use of maturity offset justified (Deprez et al., 2012). Also, recent studies showed poor to moderate agreement between invasive and non-invasive methods to predict maturational status (Malina et al., 2012; 2013). The equation to estimate maturity offset emerged from longitudinal studies from Canada and Belgium and many users tend to ignore the magnitude of standard error of estimation and the potential variation of agreements between estimated and real values at ages long before PHV and long after PHV. This limitation should be considered when considering future research in this area. Moreover, further research is necessary to validate the maturity offset method in a young soccer population. |