The purpose of this study was to compare landing sound and mechanical parameters between the habitual landings strategies of traceurs and recreationally trained individuals from differing drop heights, in an attempt to gauge the safety of the landing techniques utilised by the two groups. Maximal vertical ground reaction force, time to maximal vertical ground reaction force and loading rates have each been identified as having a relationship with injury rates in landing based activities (Zhang et al., 2008; Ricard and Veatch, 1990; Woodard et al, 1999); therefore these variables were selected for observation and will be discussed accordingly. It was hypothesised that the habitual landing strategy of recreationally trained individuals would involve a forefoot to heel landing technique, whereas traceurs would utilise a “precision” landing strategy that is predominantly forefoot only. It was also hypothesised that compared to the recreationally trained individuals, traceurs would land more quietly with less vertical ground reaction force and an overall lesser loading rate. Findings of this study support this hypothesis, with significant differences found between peak vertical GRF, time to maximal vertical GRF and loading rates between the two groups at both 25% and 50% heights. Maximal sound was significantly different at the 50% drop height; however this significance was not seen at the 25% height. It was also identified that traceurs incorporated a ‘precision’ style landing during 93.2% of their total trials, while the recreationally trained participants used predominantly (91.7%) forefoot-heel landing strategies. As stated by McClay et al., (1994), GRF is a measure of the magnitude of stress placed upon an individual during a ground contact. The higher these GRFs, the larger the stress on the musculoskeletal system and therefore the greater the risk of injury to the individual (Bressel and Cronin, 2005; Irmischer et al., 2004). The results of this study showed that the Parkour precision landing strategy demonstrated significantly less vertical GRFs (2.5BW, 3.6BW) in comparison to the recreationally trained individuals (4.4BW, 7.4BW), during the 25% and 50% drop landings, respectively. This data suggests that due to the lesser peak GRFs on impact, the Parkour precision landing was indeed a safer method of touchdown than the habitual landing strategies of the recreationally trained participants. Past research has investigated many variables that are associated with changes in vertical GRFs, such as different landing styles, participant population types, varying sporting codes and variable drop heights. Although these factors have been shown to influence the level of GRFs recorded, the results of this study still fall within similar ranges to what has previously been reported. For example a study by Prapavessis and McNair (1999), identified that habitual landing techniques of 91 high school students had a mean vertical GRF of 4.53BW, when landing from a 0.3m height. This study provides similar vertical GRF readings to those witnessed in the current study, especially in terms of the recreationally trained participants at the 25% drop height (~0.44m), which was similar to the height used by Prapavessis and McNair (1999). A study by Zhang et al., (2008) reported vertical GRFs of ~7BW in a group of 10 physically active men, whilst dropping from a 0.75m height using their own habitual landing strategies. Similarly, McNitt-Gray et al., (1993), conveyed that during drop landings from a height of 0.72m, nine female gymnasts produced vertical GRFs of ~6BW when using their own preferred style of landing. The habitual landings of the recreationally trained participants in the current study fall well within the constraints of the data reported by these previous studies, therefore verifying their validity and consistency; however, the Parkour precision landing has been reported to produce less than half of the vertical GRFs stated by McNitt-Gray et al., (1993), Prapavessis and McNair (1999) and Zhang et al., (2008), even when dropping from heights 0.1-0.15m higher. Previous investigations into Parkour style landings by Puddle and Maulder (2013), established that during drop landings from a 0.75m height, the precision style landing demonstrated vertical GRFs of ~3.2BW, which is similar to those seen in this current study. There are several explanations that may provide insight into why the Parkour precision landing generates such little vertical GRF. The first possible justification encompasses the postural position of the torso during touchdown. According to Blackburn and Padua (2009), flexion of the trunk during landing increases the level of hip and knee flexion and therefore decreases the magnitude of GRFs during the movement. This statement is backed by the findings of Horita et al., (2002) and Wikstrom et al., (2006), who state that vertical GRFs can be lessened with increased flexion at the hip and knee, as this allows the forces to dissipate throughout the surrounding joints and musculature. Although these kinematic parameters were not measured quantitatively within the current study, based on the qualitative observations (as per the video footage) the traceur landings predominantly incorporated a larger degree of flexion at the hips during touchdown, in comparison to the recreationally trained individuals, which intuitively would lead to minimised GRFs during the movement. However, a more thorough kinematic/kinetic analysis is recommended to validate such assumptions. The second possible explanation for the lower GRFs during the Parkour precision landing is the impact of the heel during touchdown. When the heel comes into contact with the ground during landing, it is typically due to the individuals technique, or lack of ability to control the eccentric forces involved with decelerating the landing velocity (Gross and Nelson, 1988). The more an individual can slow the movement eccentrically, the larger the dissipation of force throughout the corresponding joints and musculature, which therefore lessens the GRFs measured during the movement (Cortes et al., 2007; Gross and Nelson, 1988). Foot strike data obtained within this current study identified that during the majority of landings, traceurs landed predominantly (93.2%) on their forefoot alone, or their forefoot and mid-foot combined (55 from 59 landings). This meant they were strong enough and had adequate technique to slow the landing to a point they could control the movement. On the other hand, the recreationally trained individuals landed on their forefoot, before making contact with their heel in 55 out of 60 landings (91.6%). This suggests they could not slow the movement or dissipate the force as effectively as the traceurs and therefore generated the higher GRFs. The magnitudes of postural flexion (hip, knee and ankle), as well as the foot strike technique employed during landing may also begin to explain the differences identified between the traceurs and the recreationally trained individuals time to mVF. Results of this study revealed that traceur time to mVF was significantly longer (68.6% and 65.9%) at the 25% and 50% heights, than the recreational group. Mean values of 91ms and 56ms were identified for the traceur group with corresponding values of 57ms and 35ms for the recreationally trained group, at jump heights of 25% and 50% body height, respectively. Previous research undertaken by Puddle and Maulder (2013), identified similar mean times to mVF when comparing Parkour precision landings (80ms), to traditional landing styles (forefoot to heel) (40ms), from a height of 0.75m. Times witnessed in both the current study and the one performed by Puddle and Maulder (2013), have exhibited values below 50ms. According to a study by Ricard and Veatch (1990), the neuromuscular system requires a minimum of 50ms to react to an applied stimulus, such as a landing touchdown. Any impact prior to this 50ms threshold is likely relying on muscular pre-activation to disperse the force and provide shock attenuation during the movement. Based on this statement, the recreationally trained participants landing from the 50% height, do not have enough time for their neuromuscular system to activate prior to the mVF, as time to mVF is a mare 35ms. This lack of neuromuscular activation correlates to a higher risk of injury in the corresponding joints and musculature involved with the movement, especially at the instance of mVF occurring (Bauer et al., 2001; Butler et al., 2003; Ricard and Veatch, 1990; Yeow et al., 2009). Although the variable was not measured within the current study, it is plausible that traceurs have a larger degree of muscular pre-activation prior to touchdown, which provides enough elastic potential within the muscles to slow the movement longer than the 50ms threshold, as stipulated by Ricard and Veatch (1990). This permits the neuromuscular system to be stimulated effectively and therefore allows the individual to activate the relevant musculature, providing flexion of the hip, knee and ankle, which in turn maintains a forefoot only landing strategy (no heel), decelerates the bodies mass, lowers the peak GRFs and also lengthens the time to mVF (Bauer et al., 2001; Butler et al., 2003; Gross and Nelson, 1988; Yeow et al., 2009). This process of lengthening the time to mVF has been stated to decrease the likelihood of skeletal injuries, therefore proving traceurs precision style landing is indeed a safer landing alternative than the habitual landing strategies employed by the recreationally trained participants (Bisseling et al., 2007; Bressel and Cronin, 2005). A recommendation for future studies is to investigate the effects of augmented feedback using cues derived from the traceur precision landing on recreationally trained individuals. This would help to identify if it is simply knowledge of landing technique, experience, practise, or a particular physical requirement that is needed to perform the landing strategy effectively. If the recreational groups can produce safer landings by simply being taught this technique, it provides a great opportunity for other sports to follow in the footsteps of traceurs and incorporate this technique into training sessions. The loading rates associated with landings have been stated to be one of the best indicators of soft and hard tissue injuries of the lower extremities (Woodard et al., 1999). The loading rate refers to the amount of force an individual encounters in relation to the speed at which peak force is attained (force ÷ time to peak force). The higher the loading rate of a landing movement, the greater the stress that is placed upon the musculoskeletal system. The current study showed loading rates of 99 ± 69.6 BW/s and 248 ± 142.3 BW/s at the 25% and 50% heights, for the recreationally trained participants. These values are similar to those reported by Decker et al., (2003), who measured loading rates of male recreational athletes from a 0.60m habitual drop landing, that produced mean values of 96.18BW/s. This study also tested females using the same protocol, who produced significantly greater loading rates of 162.11 BW/s. Contrastingly, a study by Bauer et al., (2001), identified loading rates of 472 ± 168 BW/s in prepubescent children, whilst dropping from a 0.61m height using their own habitual landing strategies. This data suggests the loading rates can vary largely, with additional research suggesting this can be due to gender (Decker et al., 2003; Fagenbaum and Darling, 2003; Salci et al., 2004), age (McKay et al., 2005; Swartz et al., 2005), landing strategy (Blackburn and Padua, 2009; Bressel and Cronin, 2005; Cortes et al., 2007) and/or drop height (McNitt-Gray et al., 1993; Yeow et al., 2009). These factors begin to explain why the Parkour landings produced loading rate values much lower than those witnessed in the majority of previous literature. During the 25% and 50% drop jump heights, traceurs exhibited loading rates of 29.9 ± 7 BW/s and 83.3 ± 62.3 BW/s, which are significantly lower than the recreationally trained individuals (99 ± 69.6 BW/s and 248 ± 142.3 BW/s). Puddle and Maulder (2013), also obtained similar values for Parkour precision landings from a 0.75m drop height (83.3 ± 80.1 BW/s). In the current study and the one performed by Puddle and Maulder (2013), variables such as gender, age and drop height were kept consistent between the two population samples, which leaves landing strategy as a possible reasoning for the variances in values. As stated previously, the ability to lower peak GRFs and lengthen the time to mVF, are critical in minimising the corresponding loading rate (Bauer et al., 2001; Blackburn and Padua, 2009; Cortes et al., 2007). This has been explained through the use of larger degrees of hip, knee and ankle flexion, as well as stronger eccentric contractions of the relevant musculature, which in turn allows a forefoot landing strategy. By doing so, the traceurs are ultimately lowering the probability of musculoskeletal injuries caused by high loading rates. Currently, there is only this present study and the findings of Puddle and Maulder (2013), that have investigated the kinetics of the Parkour landing strategies. In both instances, the data has revealed that in acute scenarios the technique proves to be safer and more efficient than the standard forefoot to heel technique. However, future research is required to identify if repetitive landings using this technique is as effective as a single landing. This is vital for traceurs, who often perform more than one landing in sequence. Due to factors such as muscular fatigue from eccentric loading, smaller surface area to balance (forefoot only) and a vast variety of landing surfaces that are associated with the activity, it is possible that these landings may prove less effective in a real-world scenario. Future studies also need to investigate the longitudinal effects of the Parkour precision landing technique. With larger focus on dissipating the force throughout the lower limb musculature, it is possible that other faults such as shin pains, patella tendonitis and achilles injuries may occur, especially if the participant is not accustomed to this style of loading or landing style. This may also connect with studies investigating the effects of training status and its relation to the effectiveness of precision landings in differing population groups. Previously, sound has been used as a measure of landing efficiency and safety in sporting and teaching environments. Although there is very little scientific research investigating this parameter, it is suggested that it may in fact have some credibility. Results of this study show that the recreationally trained individuals produced significantly louder (70.4 ± 7.9 dB) landings from the 50% height, in comparison to the traceurs (64.1 ± 2.7). This trend was also observed at the 25% drop height with a moderate effect size shown, or 3.6% quieter landing observed in the traceurs, in contrast to the recreationally trained group. It can be speculated that this increase in sound during landing can be attributed to multiple kinematic and kinetic factors involved with the recreationally trained groups landing technique. Firstly, it has been established that the recreational group were less effective than the traceurs at decelerating the landing velocity. This is likely due to increased postural stiffness during landing, lack of eccentric strength and/or variations in technique; which in turn lead to increased GRFs and a faster time to mVF. This suggests they are landing at a faster speed than the traceurs, with larger forces and with a shorter time to dissipate these forces. The combination of these parameters have been suggested to induce a larger maximal sound, or decibel reading at touchdown based on the findings of Prapavessis and McNair (1999). This is also exaggerated by the fact traceurs landed predominantly forefoot and forefoot-midfoot (93.2%), whereas the majority of recreational group landings occurred with heel contact during touchdown (91.6%). This increased the total surface area of contact upon touchdown, which may also increase the likelihood of a louder landing. In terms of validating the ability of sound to be used as a measure of landing effectiveness and safety, all contributing variables must be taken into account. Increases in the likelihood of injury have been stated to be related to higher peak GRFs, shorter time to peak mVF and also higher loading rates (Bisseling et al., 2007; Bressel and Cronin, 2005; Butler et al., 2003; Dufek and Bates, 1990; Irmischer et al., 2004). Each of these factors have been proven to be safer in the habitual landing style of the traceurs, based on the values collected in this study. This group has also been identified as achieving a significantly quieter landing touchdown in comparison to the recreationally trained group. This suggests sound can in fact be a valid predictor of landing safety and effectiveness when being performed at a height of 50% body height, whilst using a precision style landing. Future research should be directed at explaining the reasons for the dissimilarities in significance between the two drop heights, as this data suggests that there may be a minimum drop height (above 25% body height), where sound is then deemed a feasible predictor of landing efficiency. It is suggested that future research test for maximal sound from a variety of heights between 25% and 50% of body height, to establish at what point the sound becomes significant. One limitation to this study is the lab based environment that the testing occurred in. Parkour is an activity that is often performed in urban areas with many different variables influencing the speed, distance and technique involved with traceur jumping and landing activities. By bringing these individuals into a lab based environment where all of these variables are controlled, it may have influenced some of the technical aspects of their performance. By standardising the step off method and landing target, it may have altered the habitual landing technique that the traceurs would have used out in the field. Another limitation in regards to this study is the style of footwear the individuals used during testing. All participants were instructed to wear their own choice of footwear, after being told they would be performing physical exercise and landings from height. It was evident that there was a variety of shoe types, ranging from light weight climbing style shoes, to heavy skater sneakers. The variances within the footwear may well have influenced the forces and sound associated with those landings. A final limitation of this study is based on the fact each of the landing trials was planned and executed with full awareness from the participant. When investigating landing safety or collaborating injury research, it is probable that this data comes from sporting based activities. Movements within this environment are often not planned in advance and happen at short notice; however in this testing environment each of the landings was pre-empted and controlled by the participant. In terms of judging safety, it can be stated that precision style landings are the safer strategy when compared to the recreationally trained individuals habitual landing technique in a lab-based environment; however it is unclear if this is the case in a sporting environment. |