This meta-analysis showed that the use of a PAS noticeably decreased the value of T1. The same significant change was also seen in the referenced articles (Cordova et al., 2010; Riemann et al., 2002; Yi et al., 2003). Though the finding was not statistically significant, a similar tendency was also found in other studies (Abián-Vicén et al., 2008; Hodgson et al., 2005; Kasturi et al., 2005). These six studies did not report on plantar flexion at initial ground contact, but some other articles did show a significant decrease in ankle plantar flexion at initial contact while subjects were wearing PASs (Chen et al., 2012; DiStefano et al., 2008; McCaw and Cerullo, 1999; Smith, 2011). A more neutral position would lead to more rapid metatarsal head contact. One potential hypothesis for the decreased plantar flexion at contact is the cutaneous proprioceptive contribution of PASs (Chinn et al., 2014; Feuerbach et al., 1994). Similarly, this study also found a decreased T2 with the use of a PAS. This change could also be associated with changes in ankle joint kinematics in the sagittal plane as the PAS significantly restrains dorsiflexion of the ankle joint during landing (Chen et al., 2012; DiStefano et al., 2008; McCaw and Cerullo, 1999). The greater joint motion may be a strategy for gaining more time for buffering, and the lower angular displacement would reduce the motion time, which would then be reflected in the lower T2. When a PAS is used, the body has a shorter time to adjust itself to a stable landing posture. The reduced buffering properties would require the body to absorb the energy within a shorter duration. According to the theorem of impulse, the impact force will increase as the duration is decreased. As seen in Figure 4, using a PAS increases the value of F2, which signifies a deteriorated buffering environment. To evaluate the risk of injury, force plates are commonly used in kinematic laboratories to provide GRF measurements for amplitude, direction, and time. These parameters are readily available and are relatively easy to analyze, but the correlation between them and the related risk of injury isn’t well understood (Mills et al., 2010; Nigg, 1997; Niu et al., 2010). There is a window of loading in which biologic tissue reacts positively to the applied impact load. Nigg (1997) concluded that the GRF levels during running are typically within an acceptable range for cartilage, bones, ligaments, and tendons. However, during high-velocity landing, GRFs may be greatly increased, which can lead to ankle sprain and other injuries. Further study is required to understand how the deteriorated buffering environment affects the risk of injury when a PAS is used during landing. Most sports injuries to the ankle joint are sprains of the ligamentous structure (Dizon and Reyes, 2010). Therefore, PASs were originally designed to protect the ankle ligaments, especially the lateral ligament complex from spraining. The widely-accepted prophylactic effect of PASs for ankle sprains is down to their mechanical support (Lindley and Kernozek, 1995). Without a PAS, during landing, the kinetic energy is partly absorbed by ligaments, muscles and tendons. When a PAS is used, this pathway is limited and more energy has to be transferred to impact loading and absorbed by the skeletal system. Abián-Vicén et al. (2008) attempted to associate the higher F2 values with a greater risk of injury when PASs are used, because of the accumulation of repeated impacts in sports where jumps are frequently performed. Two recent studies have shown that a greater F2 may be associated with an increased risk of the anterior cruciate ligament (ACL) injury (Fong et al., 2011; Malloy et al., 2015). Both Pappas et al. (2007) and Bates et al. (2013) also concluded that a shorter T2 may increase ligament strain and better represent the abrupt joint loading that is associated with ACL injury risk. All these evidences showed that PAS may affect the ACL injury risk. F1 and F2 often reflect diametrically opposite tendencies during landing (Mill et al., 2010; Ortega et al., 2010). The present meta-analysis found that F1 was not significantly influenced by the use of a PAS. Though F1 is at a lower level than F2, F1 and T1 conjunctively may be useful for evaluating the subtle influence on the forefoot or metatarsophalangeal joints. Further investigation should be needed to elaborate on this finding using a more detailed multi-segment foot model. There are many types of PAS, but they are generally classified into two main categories: ankle braced and taped. A systematic review concluded that no one was more superior to the other, and both could effectively reduce the incidence of ankle sprains among previously injured individuals (Dizon and Reyes, 2010). When comparing the influence of PASs on the vGRF, two previous studies also showed no significant difference between ankle brace and tape (Niu et al., 2011; Riemann et al., 2002). Therefore, this current meta-analysis pooled all types of PASs together to study their effects on vGRF characteristics. Some authors also took high-top shoe as one type of PAS (Fu and Liu, 2013), but only Brizuela et al. (1997) studied the influence of top height on GRF performances during level landing. To avoid bias, this article was not considered in this meta-analysis. A limitation of this meta-analysis is that in the pooled studies, participants performed various types of landing, e.g. single-leg and two-legged landing, soft and stiff landing, drop landing, jump landing, and simulated parachute landing fall. For example, subjects performing a simulated parachute landing fall may have different GRF features in each leg because they would be instructed to fall to one side at the end of landing process (Kasturi et al., 2005). However, all these landings mainly involved movement in the vertical direction. Landings in the lateral direction or cutting were not considered because they had different GRF characteristics and the PAS played different roles. This may be another interesting future study, to analyze the effect of PASs during lateral landing. Additionally, many other factors, such as footwear, sample frequency, fatigue, age, and activity level would potentially affect the analysis (Niu et al., 2014; Pappas et al., 2007). Certainly, it is very beneficial to evaluate the effect of different factors on biomechanical parameters during landing or other movements. With a comprehensive review and analysis of published data, this study provides a global and objective view of the influence of PASs on the characteristics of vGRF. |