In the present study, we investigated the effects of PA at a daily dose of 375 mg and 250 mg on body composition and muscle strength while participants engaged in eight weeks of supervised RT. Herein, we demonstrate neither dose of PA supplementation to have a differential effect, compared to each other and placebo, on increasing lean mass, RF CSA, or lower-body strength. In rodent models which utilized muscle overstretch or resistance exercise, the literature to date indicates that direct binding of PA to mTOR activates mTORC1 (Hornberger 2006; Lehman 2007). Resistance exercise is a known stimulus for skeletal MPS via the PI3K/Akt-mTOR signaling pathway (Bodine et al., 2001; Koopman et al., 2006; Sandri et al., 2008); therefore, it is conceivable that exogenous PA supplementation combined with resistance exercise could further stimulate the mTOR pathway during RT. However, this was not investigated in our current study, nor has it been investigated in any of the previous human studies involving RT and PA supplementation (Escalante et al., 2016; Hoffman et al., 2012; Joy et al., 2014). In the human trial portion of the study by Joy et al. (2014), PA supplementation at a dose of 750 mg was shown to be effective at increasing muscle mass and strength. In addition, the in vitro, cell culture portion of their study, performed by co-authors portion of their study determined PA is capable of increasing mTOR signaling. However, direct implications from the in vitro portion of their study cannot be used to substantiate the role of mTOR up-regulation in vivo during the eight weeks of PA supplementation and RT that was also employed in humans. Furthermore, while the in vitro results from Joy et al. (2014) are noteworthy they provide little, if any, substantiation to the role that PA supplementation may have on mTOR-induced increases in MPS in humans in response to RT. Therefore, a study employing an in vivo design in humans would be much more meaningful in attempting to elucidate the impact of PA supplementation may have on the up-regulation of mTOR when combined with RT. In the current study, we showed increases in body mass of 2.65%, 0.82%, and 1.15% for PA375, PA250, and PLC, respectively. For lean mass, increases of 2.31%, 0.8%, and 2.71% were observed for PA375, PA250, and PLC, respectively. Increases in RF CSA of 13.33%, 27.71%, and 11.85%, respectively, were observed for PA375, PA250, and PLC. Respective increases in lower-body strength of 13.36%, 20.12%, and 8.89% were observed for PA375, PA250, and PLC. In regard to our observed increases in lean mass and RF CSA, there were no significant differences, either due to PA or RT, in total body water. The results of all four studies compare very similarly, yet our current study and that of Hoffman et al. (2012) only observed significant increases in response to RT that were not due to the PA supplement. However, despite the overall similarity in results, the studies of Joy et al., (2014) and Escalante et al., (2016) showed significant increases that favored the PA group. There are a number of potential discrepancies between the current investigation and the previous investigations that could help explain the incongruence in the outcomes of the four studies which include: 1) differences in RT program design, 2) resistance training experience of participants 3) supervised/monitored exercise sessions, 4) use of an energy-controlled diet, 5) provision of a collagen protein drink following each workout, 6) timing of supplement ingestion, 7) different exercises used to assess lower-body strength, and 8) different methods to assess thigh muscle size. The current investigation utilized a similar resistance training program as Hoffman et al. (2012), eight weeks of RT 4 day/week with two upper-body and two lower-body training days, however, using identical designs Joy et al. (2014) and Escalante et al. (2016) examined eight weeks of supervised RT, but utilized an undulating single-set resistance training periodization program 3 day/week (with each muscle group being trained 1-2 days/week). Hoffman et al. (2012) utilized an identical PA dose as Joy and Escalante (750 mg), yet produced similar results in regards to strength and lean mass as seen in our current investigation with 375 mg and 250 mg that did not favor PA supplementation. Therefore, the discrepancy in results among the four studies could be the differences between RT programs and overall training volumes. A meta-analysis by Wolf et al. (2004) examined single set vs. multiple set resistance training studies in trained individuals and determined a multiple set approach produces greater adaptations. Comparatively, there appears to be no difference in set variation in untrained individuals during a short RT period. Based on the results of the meta-analysis of Wolf et al. (2004), given the reduced RT stimulus it is unclear how similar PA doses (750 mg) utilized in the Joy et al. (2014) and Escalante et al. (2016) studies produced significant increases in muscle size and strength compared to Hoffman et al. (2012), which also used 750 mg PA, and the current study which used 375 mg and 250 mg PA. Although, it is interesting to note that even in untrained males a multiple set approach has demonstrated a superior ability to improve strength and lean mass accumulation in the lower-body (Ronnestad 2007). Some of the potential discrepancies between the current investigation and the previous investigations could be the time point at which the supplements were ingested. Hoffman et al. (2012) did not control the time of supplement ingestion. Joy et al. (2014) had participants ingest the supplements 30 minutes prior to exercise, whereas Escalante et al. (2016) had participants ingest supplements 30 minutes prior to exercise and immediately following exercise. It is obvious that there is no standardized time in which to ingest the PA supplement. As a result, we chose for our participants to ingest the supplements 60 minutes prior to exercise. Another discrepancy could be the lower dosages of PA ingested and the lack of the provision of a post-workout collagen protein supplement or an energy-controlled diet. Previous investigations utilizing daily PA supplementation in conjunction with RT are limited to date and have all utilized 750 mg of PA in resistance-trained males while also providing a collagen protein post workout (Hoffman et al., 2012; Joy et al., 2014; Escalante et al., 2016). In the current investigation, we utilized resistance-trained males and a RT program more similar Hoffman et al. (2012); however, it involved lower doses of PA, did not employ an energy-controlled diet, nor did it provide a collagen protein post workout. Joy et al. (2014) examined eight weeks of supervised RT combined with 750 mg of PA (7day/week), but utilized an undulating single-set resistance training periodization program 3 day/week. PA significantly improved skeletal muscle size (determined by RF CSA using ultrasound), lean body mass, and leg press strength. Escalante et al. (2016) utilized the same experimental design and also observed significant improvements in lean body mass and strength that favored the PA group. However, in the Escalante et al. (2016) study thigh muscle mass was assessed by DEXA rather than ultrasound. In addition to 750 mg PA, the experimental supplement provided in their study also contained L-leucine, hydroxyl-methyl butyrate (HMB) and vitamin D3. Obviously, this is a major limitation to their study as there is no way to discern the actual impact of PA on lean mass and muscle mass and strength. As with our current study, Hoffman et al. (2012) observed no statistical interactions between groups for lower-body strength and thigh muscle mass, and even though the current study used lower doses of PA and did not provide collagen protein post-exercise, both studies yielded very similar increases over the course of RT. Further analysis using magnitude-based inferences revealed PA to have a likely benefit for improvements in lower-body strength and lean body mass. This led the authors to suggest a combination of daily PA supplementation combined with resistance training to have a likely benefit on strength improvement for lower-body, and very likely benefit of lean tissue accruement in young, resistance trained males. Incidentally, our current results are very similar to those of Hoffman et al. (2012). Both studies also utilized magnitude-based inferences, and both were in agreement that PA produced a more than likely benefit for lower-body strength and muscle mass increases. Another difference between the previous PA studies is the utilization of direct supervision of RT sessions in Joy et al. (2014) and Escalante et al. (2016) study, but not in the study of Hoffman et al. (2012). However, in the current investigation we utilized supervised RT sessions and our results are very similar to Hoffman et al. (2012). Even though directly supervised RT in resistance-trained males has been shown to produce a greater rate of training load increase and strength gains compared with unsupervised training over 12 weeks (Mazzetti 2000), this does not appear to confound the results between these two studies. A notable limitation with the current study, and the three previous studies, is that supplementation compliance was only monitored through compliance logs, thus the potential for misreports and non-compliance does exist. Although, in agreement with Hoffman et al. (2012), based on magnitude-based inferences, the results of our current study do provide evidence that a 4-day/week split routine RT program for eight weeks, combined with daily ingestion PA, appears to have a likely benefit on strength and may have a role in lean tissue accruement. However, additional research is necessary to complement these results including: 1) bioavailability studies to determine the absorption profile of orally administered PA and at different doses, and 2) studies utilizing humans and RT supplemented with PA, and perhaps at different doses of PA, while obtaining muscle biopsies to determine the role of PA-induced mTOR activation on MPS. Further, given the limited amount of current literature and the incongruence among results of the studies, the justification for additional investigations remains present. If PA has a positive impact on lean mass accruement and strength measures, based on the studies performed thus far there is undoubtedly a dose response relationship that warrants additional investigations. While human RT studies can indicate possible effectiveness of PA in muscle mass and performance, until muscle biopsy samples are collected during a training study it is difficult to infer that any beneficial effects of PA supplementation that have occurred with the studies of Joy et al. (2014) and Escalante et al. (2016) are due to PA-induced activation of mTOR. |