Research article - (2016)15, 704 - 714 |
Effects of a High Protein and Omega-3-Enriched Diet with or Without Creatine Supplementation on Markers of Soreness and Inflammation During 5 Consecutive Days of High Volume Resistance Exercise in Females |
Sara Hayward1, Colin D. Wilborn1,2,, Lem W. Taylor2, Stacie L. Urbina2, Jordan J. Outlaw2, Cliffa A. Foster2, Michael D. Roberts3,4 |
Key words: Whey protein, creatine monohydrate, muscle soreness, inflammation |
Key Points |
|
|
|
Participants |
Twenty-eight apparently healthy non-resistance trained females (age: 20±1 yr; body mass: 63.5±1.6 kg, height: 1.67±0.01 m) volunteered for the 9-week study. Pre-study questionnaires were administered to ensure that participants had not been taking any nutritional supplements for the past 6 months or had any prior experience with a structured resistance training program prior to enrolling in the study (i.e., did not participate in a team-based and/or self-structured strength and conditioning program in college or high school). Medical screening was implemented to ensure participants were free of any potential orthopedic or medical issues that could be aggravated by the study protocol. Each participant was verbally informed of study as well as the potential risks of the investigation and signed an informed consent in accordance with the University of Mary Hardin-Baylor’s Institutional Review Ethics Committee and Helsinki Declaration. It should be noted that our |
Experimental design |
The study was conducted as a randomized ‘open label’ controlled experimental design whereby participants were aware of which treatment group they were assigned to. Dependent variables included: body composition, upper and lower body one-repetition-maximum (1RM), overreaching protocol performance (4 exercises, 8 total sets, 10 repetitions per set), and select blood markers related to overreaching [cortisol, C-reactive protein (CRP), and interleukin-6 (IL-6)]. To determine the effects of dietary intervention on performance, body composition and biological makers of overreaching, three experimental groups were used:
All participants completed 4 weeks of pre-training (weeks 1-4) followed by a subsequent 4-week training period along with the dietary intervention (weeks 5-8). We attempted to use a high-volume ‘overreaching’ training protocol during week 9 which involved five consecutive days of lifting. Exercises during these 5 days stressed both the large upper and lower body muscle groups while minimizing rest between sets, reps, and workouts. A more detailed schematic of the study design is presented in Pre-training testing (T1) included a battery of tests in the following order: a) hydration testing via urine refractometry, b) resting energy expenditure (REE) assessment using indirect calorimetry (Parvo Medics, Sandy, UT), and c) 1RM testing for bench press, deadlift, back squat, and hip-thrusters. After T1 testing, participants were instructed to report to the laboratory for a 4-week pre-training period (weeks 1-4) described in detail below. Notably, REE was only assessed at T1 in order to prescribe a target Caloric intake for the DI and DI+C groups and this is described in greater detail below. At the end of the four week pre-training period, participants reported to the laboratory for a battery of tests including the following (noted as T2): a) hydration testing via urine refractometry, b) body composition assessment via dual energy x-ray absorptiometry (DEXA), and c) 1RM lifts for bench press, deadlift, back squat, and hipthrusters in order to increase loads during training period 2. The four week dietary intervention for all three groups also started through weeks 5-8 and diets were designed by researchers in the Human Performance Laboratory. Moreover, after T2 testing participants were instructed to report to the laboratory for a 4-week training period (weeks 5-8) described in detail below. At the conclusion of week 8, a third testing session (T3) occurred and included a battery of the following tests: a) a donation of a venous blood sample following an overnight fast, b) 1RM for bench press, deadlift, back squat and hip-thrusters, and c) body composition assessment via DEXA. After T3, and at the beginning of week 9, subjects reported to the lab in an overnight-fasted state for 5 consecutive days between the hours of 5 AM and 8 AM. Subjects performed an overreaching workout described in greater detail below. Notably, venous blood samples and a visual analog scale for muscle soreness (DOMS) were obtained prior to workouts. |
Body composition assessments |
Total-body lean body mass (LBM) and fat mass (FM) was determined using a DEXA (Discovery QDR, Hologic, Inc., Bedford, MA). Before the DEXA scan, body mass was determined using TANITA body composition analyzer (Tanita Corporation of America, Inc., Arlington Heights, IL, USA) and height was determined using a SECA stadiometer (SECA North American, Chino, CA, USA). Subjects were then aligned on the DEXA table and instructed to lay completely still in a supine position for the 6-min duration of the test. The scan was analyzed by trained lab personnel. For DEXA measurements, previous test–retest reliability in our lab are as follows: fat mass: intra-class correlation coefficient (ICC) = 0.998; lean mass: ICC = 1.00. |
1RM testing |
1RM tests were determined for bench press, squat, deadlift, and hip-thruster, and testing as well as proper technique was maintained as outlined by the National Strength and Conditioning Association (McGuigan, |
Resistance training protocols |
Before the start of the dietary intervention, subjects participated in a 4-week pre-training protocol (weeks 1-4) as described above. This period helped ensure each subject entered the training and dietary intervention in an equally-trained state as has been previously employed by Ratamess et al. ( |
Nutritional prescription and dietary analysis |
Prior to the T1 laboratory visit, participants were instructed to record all food intakes for seven days. Following T1 testing, subjects were randomly assigned into one of the three testing groups: CTL, DI, & DI+C. For those in the group CTL, they were given a photocopy of their diet log and instructed to eat the same meals for the weeks 5-9. A dietary intervention was implemented for the both the DI and DI+C group and recommended kilocalorie intakes were prescribed based off the 1.15*REE results from T1. Researchers gave each subject an individualized diet that provided an adequate number of servings for whole grains, vegetables, fruits (especially those high in antioxidants), and dairy based on their recommendations. Daily protein recommendations were assigned using a total daily intake of 1.8 g*kg-1 of bodyweight. Two scoops of hydrolyzed whey protein isolate (serving size: 1 scoop 29.9 g; 110 kilocalories, 25 g protein, 0 g carbohydrate, 0 g fat; Dymatize Nutrition, Dallas, TX) were provided each day for both the DI and DI+C groups. Subjects were given a list of approved foods and foods to avoid, during the intervention. Also those in the DI+C and DI groups were instructed to drink at least a gallon of water a day. Fish-oil capsules high in omega-3 fatty acids (Nature Made, Mission Hills, CA), which provided 540 mg/d eicosapentaenoic acid and 360 mg/d of docosahexaenoic acid, were also provided to the DI and DI+C groups. Participants in the DI+C group were given 5 g/d of micronized creatine monohydrate (Dymatize Nutrition) with their supplemental protein. Finally, a second diet log was administered at the end of the study whereby participants were instructed to record all food intakes for seven days prior to the T3 visit. T1 and T3 diets logs were entered into a nutrition informatics software program (ESHA Research, Salem, OR) for nutritional assessment in order to obtain kilocalorie intakes, macronutrient intakes and omega-3 and -6 fat intakes. |
Overreaching protocol |
During week 9, participants remained on their respective diets and performed a putative overreaching protocol over 5 consecutive days. The training protocol consisted of 4 exercises (bench press, deadlift, squa t and hip-thruster) performed for 8 sets of 10 target repetitions (or until failure) per exercise at 70% of the subjects 1RM with two-minute rest periods between each set. Requirements for a completed repetition were the same as for the 1RM efforts previously outlined. If a participant did not execute proper form for a repetition, that lift was considered a “no rep”, and therefore was not counted in the total number of reps for that set. Training volume was recorded for each workout in order to assess between-group differences. Moreover, subjects were told to refrain from the use of any non-steroidal anti-inflammatory or analgesic drugs, the use of ice, or any other workouts during the overreaching protocol. |
Blood sample analysis and delayed onset of muscle soreness (DOMS) assessments |
On blood collection days, serum blood was collected from the antecubital vein in 7.5 ml serum separator tubes. After collection, blood was centrifuged for 15 min at 3,500*g at room temperature. Blood serum was aliquoted into 2 ml pre-labeled microcentifuge tubes, and stored at -20C for batch analysis. Serum markers were analyzed in duplicate using colorimetic enzyme-linked immunoassays (cortisol and CRP, ALPCO Diagnostics, Salem, NH; IL-6, Cayman Chemical Company, Ann Arbor, Michigan; CK, BioVision, Inc. Headquarters, Milpitas, CA) according to manufacturer’s instructions. For DOMS assessments, data collection occurred as previously reported (Kephart et al., |
Hydration assessment |
Hydration status was assessed weekly and, importantly, prior to DEXA testing. Briefly, participants were asked to provide a urine sample (≥ 1 fluid ounce) upon arrival to the laboratory. Urine was analyzed by a laboratory assistant using a digital hand-held urine specific gravity “pen” refractometer (PEN-Wrestling, ATAGO U.S.A., Inc., Bellevue, WA). The pen was calibrated using manufacturer guidelines. The pen was dried with a paper towel and then used to analyze the urine sample by pressing the start button and then submerging the tip of the pen into the sample until a reading was displayed on the screen. Adequate hydration status was defined as 1.006-1.028 ppm urine specific gravity. Given that all participants were adequately hydrated during each week as well as prior to DEXAs, these data were not reported. |
Statistical analysis |
Mixed factorial-way group by time repeated measures ANOVAs were used to analyze nutritional variables, body composition, blood markers, DOMS scores and overreaching training volume. If significant group*time interactions existed, the model was further decomposed by: a) performing between-group comparisons at each time point using independent samples t-tests, and b) variables at post-intervention time points were compared between groups using one-way ANOVAs with Bonferroni |
|
|
Training compliance as well as nutritional differences between treatments from baseline to post-intervention |
Training compliance during the course of the study was 94% across all subjects. Self-reported nutritional data prior to and following the intervention are presented in |
Body composition changes between treatments from weeks 4-8 |
There were no group*time interactions for DEXA fat mass (p = 0.72; |
Strength changes between treatments from weeks 4-8 |
There was no significant group*time interaction for 1RM bench press (p = 0.28; |
Volume lifted, DOMS scores and blood markers of overtraining during week 9 |
Interestingly, there was no time or group*time interaction (p = 0.12 and p = 0.83, respectively) for volume lifted on days 1-5 during the week 9 overreaching protocol ( |
|
|
Here, we report two major findings which include: a) under our current experimental design, it appears that 4 weeks of a dietary intervention with added whey protein and omega-3 fat supplementation with or without added creatine does not affect body composition or muscle strength in females, and b) the employed 5-d resistance training protocol during week 9 did not cause a decrease in training volume, an increase in DOMS and/or an increase in select blood markers associated with inflammation and, thus, is not a viable overreaching protocol. Our lack of significant between-group findings for body composition and strength changes during weeks 4-8 were likely due to the relatively short nature of this intervention. In this regard, we have reported that 8 weeks of whey protein supplementation increases DEXA lean body mass in female collegiate basketball players compared to a non-supplemented group (Taylor et al., We also report that, regardless of dietary intervention, our 5-d training protocol during week 9 actually decreased DOMS scores and did not alter circulating markers associated with overtraining (i.e., cortisol) and inflammation (IL-6 and CRP). Indeed, the aforementioned study by Volek et al. ( This study has noteworthy limitations. First, menstrual cycle phase was not accounted for in the tested participants. Collecting this data would have been interesting given that high circulating levels of estrogen during the late follicular and luteal phases may have correlated with reductions in circulating DOMS and/or serum overtraining markers; a phenomena which has been reported previously in females with eccentric resistance exercise protocols (Kendall and Eston, |
|
|
Our study, along with other similar laboratory-based resistance training overreaching studies, demonstrate the difficulty in promoting an ‘overreached’ state in participants over a 5-d to 4-week period. Specifically, our findings suggest that our attempt to elicit overreaching during week 9 with 5 consecutive days of high-volume resistance training did not affect circulating biomarkers associated with increased stress or inflammation, and may facilitate positive training adaptations (i.e., lowered DOMS and increases in strength). Notwithstanding, reports from other studies suggest that the rate of force development is impaired with laboratory-based overreaching protocols, and this phenomena is sports-relevant given that many athletic endeavors require a rapid rate of force development (i.e., sprinting, jumping, exerting force against an opponent, etc.). Therefore, future research should continue to examine if team-based training protocols elicit an overreaching signature related to power decrements and determine whether nutritional modulation and/or unloading periods can help mitigate these effects. |
ACKNOWLEDGEMENTS |
We thank Dymatize Nutrition (Dallas, TX) for the donation of nutritional supplements used in this study. We also thank the participants for taking the time to volunteer for this study. None of the authors have competing interests to declare regarding the publication of this manuscript. |
AUTHOR BIOGRAPHY |
|
REFERENCES |
|
Email link to this article