Research article - (2017)16, 230 - 238 |
No Effect of a Whey Growth Factor Extract during Resistance Training on Strength, Body Composition, or Hypertrophic Gene Expression in Resistance-Trained Young Men |
Michael J. Dale1, Alison M. Coates1, Peter R.C. Howe2, Grant R. Tomkinson1,3, Matthew T. Haren4, Andrew Brown5, Marissa Caldow6, David Cameron-Smith7, Jonathan D. Buckley1, |
Key words: Nutritional supplement, lean tissue mass, gene expression, P70s6k, FOXO3a |
Key Points |
|
|
|
This study used a randomised, double-blind, placebo-controlled parallel design. All participants undertook a 12-week progressive resistance exercise training program and were allocated to concurrent daily consumption of 20 g of whey protein isolate together with 1.6 g of cellulose (CONT n = 24) or 1.6 g of WGFE (n = 22). A dose of 1.6 g/day, rather than the 2 g/day used in the preliminary study (Carey et al., |
Participants |
Adult males aged 18–30 years who had been participating in regular (≥2 sessions per week) resistance exercise training for at least six months immediately prior to the study were recruited via public advertisement. All participants reported being free from current or prior musculoskeletal injury which would prevent them from undertaking the training required for the study. Prospective participants were excluded if they were: (a) smokers or had recently (within the previous 6 months) quit smoking; (b) engaged in other athletic training that might confound the outcomes of the present study; (c) consumed prescription medication; (d) were allergic to/sensitive to/intolerant of dairy proteins or lactose; or (e) had recently (within the past 6 months) taken any form of supplement intended to increase physical performance or enhance recovery. All potential participants were administered the Sports Medicine Australia pre-exercise screening questionnaire (Sports Medicine Australia, |
Supplements |
All study supplements were commercially available products (Murray Goulburn Co-Operative Co Ltd, Melbourne, Australia). The protein and growth factor composition of the WGFE supplement is provided in |
Anthropometry and body composition measures |
At baseline height was measured using a stadiometer (SECA, Hamburg). Body mass was measured using digital scales (Tanita Ultimate Scale, Tokyo) at baseline and after 6 and 12 weeks and mid-thigh girth was measured using a tape (Lufkin, Apex Tool Group, Maryland) following International Society for the Advancement of Kinanthropometry (ISAK) protocols (Marfell-Jones et al., |
Strength measures |
Maximal isometric torque of the right knee extensors was assessed using an isokinetic dynamometer (Biodex System 4, Biodex Medical Systems Inc, Shirley, NY). Participants were positioned on the dynamometer with the knee joint flexed to 90° and the axis of rotation of the knee joint aligned with the axis of rotation of the lever arm of the dynamometer. The lever arm of the dynamometer was strapped to the participants’ ankle at 3 cm above the medial malleolus. Seat position data (seat pan depth, seat rail location, lever arm length) were recorded to enable replication of position for subsequent testing. Three sub-maximal warm-up efforts of 5 seconds duration were performed with a 1-minute rest between efforts. After a 2-minute rest, three maximal 5-second isometric efforts were performed with a 1-minute rest between. Test-retest reliability was assessed using data from two testing sessions separated by 1-2 weeks on all 46 subjects. Reliability for maximal isometric torque was excellent (ICC ± 95%CI: 0.92 ± 0.05). One-repetition maximum (1RM) testing was performed for incline leg press following American College of Sports Medicine (ACSM) guidelines (American College of Sports Medicine, Non-biopsy participants began training 2–3 days after baseline testing, to allow for recovery from the 1RM testing procedure. Participants undergoing biopsies began training on the day of their biopsy, which occurred 4-7 days after baseline testing. |
Resistance training intervention |
Participants were familiarised with the strength testing protocols and the resistance training program prior to commencement of testing. Each participant underwent a 2-hour familiarisation session to ensure correct technique for all exercises comprising the testing and training program. The resistance training program consisted of a whole-body, non-periodised, progressive program designed to improve strength and hypertrophy. Participants trained at the research facility gymnasium three times per week with 24–72 hours between training sessions. The following exercises were performed in order: bench press, smith machine hack squat, lat pulldown, incline leg press, weighted dip, preacher bench biceps curl, seated row, seated calf raise, and sit-ups. All exercises (except sit-ups) were performed using custom-made resistance equipment ( Three sets of 12 repetitions per exercise were attempted (except for the sit-ups where three sets of 20 repetitions were attempted), with a 1-minute rest period between sets and a 2-minute rest period between exercises. Lifting was continued until concentric failure or the 12 or 20 repetition target was reached. The number of repetitions per set was recorded by each participant in a training diary, with participant-selected increases (typically 2.5 to 10.0 kg, dependent upon the exercise) occurring when the participant could successfully perform three sets of 12 repetitions at the target resistance. Progression for the unweighted sit-ups task occurred through increases in the numbers of repetitions, with a 2-repetition increase occurring when three sets of 20 repetitions could be successfully performed. The total volume of training per treatment group was quantified as the total number of exercises x number of sets x number of repetitions x resistance (kg), and was expressed per training session. All training sessions were supervised in order to ensure correct technique was used and compliance with the training program. |
Muscle biopsy |
A sub-population from each treatment group (WGFE and CONT, |
Western blotting |
Tissue samples (10 mg) were homogenised in cell lysis buffer following the manufacturer’s instructions (Biorad, Hercules, CA) using a tissue disruptor for 20 seconds at a speed setting of 5.5 (FastPrep, Thermo-Fisher Scientific, Australia). The homogenate was frozen at -80° C for 10 min then rotated at 4° C for 1 hour. The lysate was centrifuged at 13000 rpm at 4° C for 10 minutes and the supernatant collected. Protein concentration was determined using the BCA protein assay kit, following the manufacturer’s instructions (Thermo-Fisher Scientific, Australia). Protein (50 μg) was separated by 8% SDS-PAGE. The proteins were transferred onto a nitrocellulose membrane and blocked in 5% bovine serum albumin (BSA) in Tris Buffered Saline with 0.1% Tween 20 (TBST) for 2 hours at room temperature. Primary antibodies, diluted in blocking buffer (1:1000) were applied and incubated overnight at 4° C; p-mTOR (Ser2448), mTOR, p-p70S6K (Thr389), p70S6K, p-Akt (Ser473), Akt, p-FOXO3a (Ser253), and FOXO3a (Cell Signalling Technology Inc., Danvers, MA). Membranes were washed six times for 5 minutes with TBST and incubated for 1 hour at room temperature with corresponding HRP-conjugated antibodies; rabbit (Merck Biosciences, Australia). Membranes were then washed six times for 5 minutes with TBST and proteins were detected by enhanced chemiluminescence (Western Lighting Chemiluminescence Reagent Plus, Perkin Elmer Lifesciences, Boston, MA). The density of the bands was quantified using a Kodak Image Station (Model: 440CF, Eastman Kodak Company, USA) and quantified by densitometry software (Kodak 1D 3.5). Membranes were stripped using Restore™ Western Blot Stripping Buffer (Thermo-Fisher Scientific, Australia) for 30 minutes before being re-probed with the total antibody, to confirm that changes observed in phosphorylation were not due to changes in total protein levels. |
Reverse transcription polymerase chain reaction (RT-PCR) |
RNA was extracted from the |
Dietary intake |
Food intakes were recorded at baseline, Week 6 and Week 12 using 3-day weighed food records which included at least one weekend day. Energy intake, macro and micronutrient profiles were calculated using Foodworks® Nutritional software (Xyris Software, Pty Ltd, Highgate Hill, Queensland; Australia). |
Statistical analysis |
Data were only analysed for participants who completed the intervention. Data are presented throughout as means±standard deviation (SD) unless otherwise indicated. Student’s t-tests were used to compare group means at baseline. To determine the effects of the treatment, time of measurement and their interactions on the outcome measures, data were analysed using a Random Effects Model (REM). Parameters were established using restricted maximum likelihood (REML) rather than maximum likelihood (ML) due to the relatively small sample. Post-hoc testing was performed to localise the main effects, where relevant, using sequential Bonferroni corrected t-tests. The Pearson correlation was used to determine relationships between parameters. Due to the potential for baseline strength to influence the magnitude of increase in strength participants were stratified on the basis of baseline leg strength (isometric knee extension strength) and secondary analysis was undertaken to evaluate whether there were differences in strength gains in different tertiles of baseline strength. NCSS version 7.0 (NCSS, Kaysville, USA) or SPSS version 20 (IBM Corp, New York, USA) was used for all statistical analysis. The level of significance was set at α of 0.05. |
|
|
Participants |
A total of 93 prospective participants were screened for inclusion. Sixty eight participants were enrolled into the study and completed baseline testing, with 46 completing the study ( |
Leg strength and training load |
Data for leg strength and loads lifted during training are presented in Secondary analysis of incline leg press strength data showed that baseline strength was inversely correlated with the change in strength by Week 12 in the WGFE group (r = -0.49; P=0.03) but not in the CONT group (r = -0.05; p = 0.80). Accordingly, for participants in the lowest tertile of leg press strength at baseline there was a significantly greater increase in leg press strength in those who consumed WGFE compared with CONT (p = 0.002; treatment effect). |
Anthropometry and body composition |
Data for anthropometric and body composition measures are reported in Regional analysis of the thigh revealed small but significant increases in non-bone lean tissue mass (p < 0.05 for time), with no difference between treatments (p = 0.37, treatment x time). Participants in the lowest tertile of leg press strength at baseline had significantly less non-bone lean tissue in their thighs compared with those in the upper tertiles (p < 0.05). However, the increases in non-bone lean tissue mass of the thigh during the training period for participants in this lower tertile did not differ between treatments (p = 0.85 treatment x time). Non-bone lean tissue mass in the thighs was strongly correlated with leg press strength at baseline (r = 0.55, p < 0.001), but changes in thigh non-bone lean tissue mass by Week 12 were not correlated with changes in leg press strength (r = 0.08, p = 0.63). Thigh girth increased during the study period (p < 0.001 for time), but there was no significant treatment x time interaction (p = 0.72). |
Protein levels and gene expression |
The ratios of phosphorylated to non-phosphorylated protein, and mRNA expression data, are presented in The only differences in treatment effects on protein phosphorylation ratios were for mTOR and p70s6k. At Week 12 there was no difference in pre-exercise mTOR protein phosphorylation ratios between treatments (p = 0.51), but mTOR phosphorylation increased significantly post-exercise in the WGFE group (p < 0.01) but not CONT. In addition there was a large increase in p70s6k protein phosphorylation post-exercise at Week 0 in CONT (385.9%, p = 0.04), but no significant change in the WGFE group. In relation to effects on mRNA expression, in the WGFE group pre-exercise Atrogin-1 gene expression levels at Week 12 were significantly higher than at Week 0 (p < 0.05) and decreased significantly from pre- to post-exercise (-49.7%, p = 0.03). No such changes were evident in CONT. |
Dietary intake |
There were no differences in energy or macronutrient intake between groups at baseline (p > 0.17, |
|
|
The main finding of the present study was that supplementation with 1.6 g/day of WGFE during 12 weeks of resistance training in resistance-trained young men did not enhance increases in muscle strength or lean tissue mass. Although there was a large increase (i.e. 34%) in the primary outcome of incline leg press strength across the 12-week training program, strength improvements were similar in both treatment groups and thus independent of WGFE supplementation. The magnitude of increase (% increase from baseline) in incline leg press strength in the present study was only ~25-30% of the increase reported in the previous study in untrained men (Carey et al., Anthropometric and body composition changes in this study were small and did not differ between treatment groups. Despite the small magnitude of whole body mass changes in this study, the changes detected were primarily the result of increases in non-bone lean tissue. These non-bone lean tissue mass increases, in combination with the small increases observed in thigh girth, suggest that skeletal muscle hypertrophy was induced by the training undertaken, but there was no additional benefit of WGFE supplementation. The increases in body weight and non-bone lean tissue mass were achieved despite decreases in energy, protein and carbohydrate intakes during the study in both groups. The reduction in dietary intake might have been a result of the daily supplementation with 20 g of whey protein in both treatment groups as whey protein increases satiety and suppresses food intake compared with carbohydrates or other proteins (Luhovyy et al., Control of skeletal muscle hypertrophy and atrophy resides, in part, within the mTOR and the ubiquitin-proteasome pathways respectively (Glass, |
|
|
Supplementation with 1.6 g/day of WGFE during resistance exercise training might provide an advantage for increasing strength in untrained individuals (i.e. novices) or individuals who are less well-adapted to training, but not for individuals who are already well adapted to strength training. |
ACKNOWLEDGEMENTS |
We thank Professor Garry Scroop (MBBS, MD, PhD) for collecting the muscle biopsy samples for this study. All authors contributed to study design. MJD collected the data. MJD, JDB, MKC and DC-S analysed the data. All authors contributed to data interpretation and manuscript preparation. The study was funded by Murray Goulburn Co-Operative Co Ltd. A Brown is an employee of Murray Goulburn Co-operative Co Ltd. The other authors have no conflicts of interest. MT Haren was supported by a Post-doctoral Training Fellowship (Public Health) from the National Health and Medical Research Council (NHMRC) of Australia (# 511345). The experiments described comply with the current laws of Australia, where the research was performed. |
AUTHOR BIOGRAPHY |
|
REFERENCES |
|
Email link to this article