The main finding of the present study was that performance in a 5000 m running time trial 24 hrs after a running interval training session and a CWI treatment was not different from performance in a 5000 m time trial 24 hrs after an interval training session and no recovery treatment. RPE and HR were also not significantly different between the two 5000 m time trials. PMS increased significantly after the interval sessions, but no significant difference was found between the two treatments. Further, ROM and TC were not affected by the interval session or either the CWI or CON treatments. Our participants were well-trained marathon runners and triathletes who were accustomed to prolonged, intense exercise. Based on the lack of significant changes in PMS, TC, and ROM, the interval session did not induce measureable muscle damage. The intent of the interval training session was not to induce muscle damage, but to induce fatigue similar to that experienced after a hard interval workout performed by an endurance athlete. During normal endurance training, athletes may not experience the same degree of muscle damage induced by heavy strength training or eccentric exercise. Previously, researchers examined the efficacy of CWI after exercise induced muscle damage when the damaging protocols used primarily eccentric strength and power exercises which would likely recruit fast, glycolytic fibers not heavily recruited during endurance exercise (Eston and Peters, 1999; Goodall and Howatson, 2008; Jakeman et al., 2009; Paddon-Jones and Quigley, 1997; Yanagisawa et al., 2003). Fast, glycolytic muscle fibers are more susceptible to exercise induced damage (Cheung et al., 2003; Friden and Lieber, 1992; Howatson and vanSomeren, 2008); however, runners competing in half-marathon, marathon, and other long-distance events, which recruit primarily slow oxidative muscle fibers, also experience some muscle damage (Linjen et al., 1988; Lippi et al., 2008; Warhol et al., 1985). Warhol and colleagues (1985) reported mitochondrial damage, myofibrillar lysis and damage to the sarcoplasmic reticulum in gastrocnemius samples of trained male runners after a marathon. Lippi and colleagues (2008), found increased levels of creatine kinase, myoglobin, and lactate dehydrogenase in the blood after a half-marathon run in endurance-trained males. The researchers suggested that changes in sarcolema permeability caused the release of intracellular proteins into the intravascular space. Similar finding have been reported in first time male marathon runners (Linjen et al., 1988). TC and ROM were measured in the present study to determine if the interval session did produce any muscle damage. Eston and Peters (1999) reported increased arm circumference for up to 72 hrs following maximal contractions of the elbow flexors. Muscle swelling may be a result of protein rich fluid movement into the damaged muscle (Cheung et al., 2005). Swelling in damaged muscle causes subsequent muscle soreness (Friden and Lieber, 1992). Researchers found that CWI attenuates muscle swelling and soreness (Eston and Peters, 1999; Vaile et al., 2008a). The lack of increase in TC in the present study indicates that the interval session did not produce edema associated with significant muscle damage. Similarly, hip, knee, and ankle joint ROM did not change over time and were not different between treatments in our study. Previously, researchers observed a significant decrease in ROM of the knee 24 hrs after muscle damaging eccentric exercise (Paschalis et al., 2005). Eston and Peters (1999) suggested that muscles and connective tissue may be shortened following damage inducing exercise, and that CWI would attenuate changes in muscle stiffness. Consistent with the results of the present study, Goodall and Howatson (2008) reported that neither muscle damaging plyometric exercise nor a CWI recovery protocol affected knee flexion. Further, neither calf raise exercises nor CWI affected ankle joint ROM (Yanagisawa et al., 2003). The interval session in the present study was not a sufficient stimulus to increase muscle and tendon stiffness and thus, no differences were found over time or between treatments. We chose the interval training session used in this study because the intensity and duration are typical of workouts performed by endurance runners who train and compete at high levels multiple times per day or across consecutive days. It was also imperative that the interval protocol and the performance measure were similar in terms of muscular and bioenergetic demands (Warren et al., 1999). While the interval training session did not produce muscle damage, it did significantly increase PMS. Muscle soreness is typically due to swelling induced by muscle damage (Friden and Lieber, 1992). Muscle soreness increases immediately after exercise, but typically peaks 24 hrs post exercise (Cheung et al., 2003). In the present study, PMS immediately after the interval session was higher than PMS 24 hrs following the interval session, suggesting that the interval session did not induce the symptoms commonly experienced with delayed onset muscle soreness due to muscle damage. Because the increase in PMS was not accompanied by an increase in TC in this study, PMS was also not likely a result of swelling induced by muscle damage. Mean PMS 24 hrs after the interval session was only slightly higher than baseline and was not different between the CWI and CON treatments. Contradictory to the findings of previous researchers, CWI used in the present study was not more effective than CON in alleviating PMS (Leeder et al., 2012). The significant increase in PMS following the interval session during both trials of the present study may have resulted from a lack of understanding of the scale by participants. Because the interval session did not produce muscle damage, fatigue and pain could have been misinterpreted as soreness immediately following the interval training session. A visual analog scale for perceived fatigue used in conjunction with the PMS scale could have provided further insight into the effectiveness of the interval training session to induce muscular fatigue and helped the participants distinguish between the constructs of muscle fatigue and muscle soreness. Previously, researchers noted positive performance effects after CWI was used as a recovery technique after sprint and endurance exercise. Rowsell and colleagues (2014) found that CWI positively affected power output during cycling intervals when CWI was used immediately after 7, 5 min running intervals at 105% of anaerobic threshold in elite triathletes. The triathletes were able to maintain a higher power output 9 hrs after CWI than thermoneutral water immersion. While similar in design to the present study, the use of different exercises for the fatigue inducing exercise and performance test and the shorter time period between CWI and the performance measure account for contradictory results. Lane and Wenger (2004) reported improved performance on an intermittent cycling protocol 24 hrs after CWI treatment. The cycling interval protocol was the same before and after the recovery treatments, but was different from the present study in that the cycling intervals were near maximal effort and of very short duration (between 5 sec and 15 sec). Evidence of improved running performance 24 hrs after high intensity intervals and CWI has also been demonstrated (Brophy-Williams et al., 2011). Brophy-Williams and colleagues (2011) found improvements in YoYo Intermittent Recovery Test performance after high intensity running intervals and CWI. Participants performed 8, 3 min intervals at 90% VO2max with 1 min rest. Because Brophy-Williams’ (2011) interval protocol was higher intensity and allowed for less recovery between intervals, the protocol likely caused greater fatigue and muscle damage than the interval protocol used in the present study. In contrast, Rupp and colleagues (2012) noted that CWI did not affect performance on the YoYo Intermittent Recovery Test when the tests were separated by 48 hrs. The researchers stated that 48 hrs of rest is likely enough time to recover from the test without additional recovery techniques. Given the positive effects of CWI on performance demonstrated by previous researchers, the interval session used in the present study may not have been a challenging enough exercise task to warrant specialized recovery techniques. The present study has several limitations. The participants had been training at current levels for more than 6 months and may have been protected by the repeated bout effect, a phenomenon that describes adaptations that occur after a session of severe or muscle damaging exercise (Proske and Morgan, 2001). Additionally, the participants in this study were highly trained and were more accustomed to the demands of interval training than we expected. The high training levels of the participants may have provided protection against fatigue and muscle soreness (Ebbeling and Clarkson, 1989). Because of the similarities in mechanical stress and metabolic cost between our study and others using marathon and half-marathon distances, we assumed that a small degree of muscle damage, and certainly a significant amount of fatigue, would have resulted from the interval training (Linjen et al., 1988; Lippi et al., 2008; Warhol et al., 1985). The interval session used in the present study was not sufficient to induce significant muscular fatigue or muscle damage necessary to observe recovery treatment differences. Future researchers should measure both muscle soreness and muscular fatigue and use an exercise task sufficient to induce a measurable degree of muscular fatigue. Results of the present study were also limited by some deviation in the warm up procedures. Our participants all completed the same warm up with the exception of stretching during a 5-10 min period during which the participants were allowed to prepare themselves for testing. Participants were asked to repeat their individualized warm up procedures between testing days, but techniques varied slightly between individuals and may have affected the results. Additionally, we instructed participants not to perform strenuous exercise for 24 hrs preceding testing; however, the effects of fatiguing, prolonged, or muscle damaging exercise may persist for up to 72 hrs following exercise (Cheung et al., 2003). It is possible that the participants experienced residual effects of other exercise bouts prior to the interval training sessions, which can be seen by the slightly greater than zero baseline PMS in both conditions. |