Past studies have shown that MRT is effective in improving muscular strength and endurance in different populations. The effectiveness of MRT in therapeutic populations was noted by Bohannon and Jones (1986), with a single case study carried out on a person affected by Duchenne muscular dystrophy. In their study, MRT was applied to muscle groups in the lower limbs 3 days per week for 12 weeks, obtaining an increased capacity of 32.7% for the left leg and 28.5% for the right leg to generate isometric extension force (Bohannon and Jones, 1986). MRT has also been extrapolated to the elderly population in the study by Tokumaru et al. (2011) where MRT was applied for 24 weeks, with one session per week during the first 12 weeks and two sessions per week in the last 12 weeks. During this period, older adult subjects performed MRT consisting of one set of 10 repetitions of leg extension. Each repetition consisted of a 7-second concentric phase and a 6- to 8-second eccentric phase, with resistance adjusted to accommodate at all times. The results showed an increase in maximum voluntary contraction for leg extension of 13.2% and 29% after 12 and 24 weeks, respectively (Tokumaru et al., 2011). Recently, La Scala Teixeira et al. (2016) has shown MRT is a viable and safe alternative for application in hypertensive men, reducing the need for expensive equipment. However, there is a lack of information on the effects that MRT can have in younger populations and those with recreational training experience, which is why the aim of the present study was to compare the effects between manual resistance and conventional resistance-training on maximum strength and muscular endurance in young recreationally trained men. The main results of the present study show that there were no significant improvements in either group, neither for maximum strength nor muscular endurance, despite a tendency towards improvement in the MRT group. This is contrary to the results demonstrated by Dorgo et al. (2009b), who observed significant improvements in muscular endurance in a group of 67 high school students. The discrepancy in the results may be attributed primarily to two parameters: first, the age and training status of the selected subjects; while non-trained high school students were selected for Dorgo’s study (2009b), our study involved young adults with several years of strength training experience. Secondly, our study lasted 8 weeks while Dorgo’s intervention was for 18 weeks. In another study led by the same researcher (Dorgo et al., 2009a), it was observed that MRT with a frequency of 3 days per week for 14 weeks, with a range of 8-12 repetitions and a cadence of 3-second eccentric and 3-second concentric movement resulted in significant improvements of 7.37% for the 1RM bench press test. The authors also included a maximum squat strength test, where they observed more pronounced results of 20.55% improvement for the MRT group. Although the MRT group obtained improvements in these tests similar to the conventional training group, there were no significant differences between the groups (Dorgo et al., 2009a). In the same study, the effects of MRT on muscular endurance were measured (Dorgo et al., 2009a); unlike our study, which evaluated this parameter with the total number of repetitions in calisthenic exercises, these authors opted to record the maximum number of repetitions for the bench press and back squat with a load of 70% 1RM. In this case, authors also observed significant improvements, recording an increase of 43.14% for the bench press, without finding statistical difference from conventional training. Again, the importance of training volume (duration and training frequency) in obtaining improvements in the studied parameters is clear; while our experimental design included 2 sessions per week for 8 weeks, Dorgo’s studies included 3 sessions per week for 14 weeks. It appears that MRT may be effective in trained subjects only through a higher training frequency and longer duration intervention. In addition, the number of exercises included can be considered a limitation in our study, given that we selected two exercises, while in Dorgo’s studies six to nine exercises were included for the major muscle groups (Dorgo et al., 2009a; 2009b). Finally, a highly influential variable is the experience of the subjects, since observed improvements are more pronounced in subjects with little strength training experience, as in the case of the study of Vetter and Dorgo (2009), in which 10 dance athletes with little or no experience in strength training obtained significant improvements in the 1RM test for bench press and lat pull-down, with increases of 8.5% and 3.3%, respectively. In the current study, the MRT group showed a change of small to moderate ES in all variables, which leads us to believe that the short duration of the intervention did not allow significant differences. It is important to note that the repetition protocol used in this study was not performed until concentric failure (perceived exertion of 8 on the 0-10 scale). Previously it was suggested that execution until concentric failure is an essential condition for promoting adaptations in trained subjects (Nóbrega and Libardi, 2016), although some disagreements can also be found in the literature (Davies et al., 2016). When using a perceived exertion scale of 0-10, a recent study suggested that rating 8 represents the subject’s ability to complete about two more repetitions to complete failure (Zourdos et al., 2016). It is probable that with trained subjects repetitions to complete failure (perceived rating of 10) are necessary to achieve significant changes in muscular strength and endurance and also that perceived exertion feedback should be solicited from subjects during the completion of a given set. Therefore, our study may have not presented a high enough intensity protocol to elicit strength and endurance adaptations from the trained subjects with a perceived exertion rating of 8. Resistance training with external variable resistance (e.g. elastic bands and chains) can be beneficial to increase strength when added to conventional external resistance, therefore allows an adaptation to human strength curves (McMaster et al., 2009). This situation can be produced during MRT. It can be argued that if the external resistance is correctly applied, with the appropriate intensity provided by an experienced partner, varying it according to the different mechanics of force production over the trainee’s range of movement, it could have advantages over the conventional resistance training methods (constant external resistance training). In the present study, although the results did not show significant differences between the two modalities, the ES was higher in MRT than CT for all variables except number of repetitions in pull-ups. Thus MRT offers a cost-effective, not location-dependent tool for increasing muscular fitness. These findings have practical implications for fitness professionals such as personal trainers who offer at-home training services. It appears that muscular fitness for both trained and untrained clients may be improved using MRT without the need for expensive fitness equipment. Comparing the results of the present study with previous studies, we can outline certain limitations to keep in mind. One important limitation of the present study is the duration of the intervention. It is possible that future study protocols need to be longer than 8 weeks, particularly when working with trained subjects. Also, for this population the volume and frequency of training must be higher. Another limitation was the performance of repetitions not to failure, whereas execution until the concentric failure is well recommended for subjects with resistance training experience. Also, a limitation is the dependence of MRT on the experience and strength of the partner (trainer) providing the external resistance. Lacking a partner with appropriate skills and level of strength to properly challenge the trainee, effects of MRT might be minimized, particularly for trained subjects. Nevertheless, the results allow us to conclude that MRT and CT can have statistically similar results when the volume and intensity are similar. Future research is needed to quantify the contribution of the partner (trainer) in the musculoskeletal adaptation providing resistance load, which could be executed with studies applying manually held dynamometers to determine the applied external resistance. Also, related future studies should use longer training interventions (> 8weeks) for trained subjects and monitor the perceived exertion of the subjects for each repetition until complete failure. |