The present study examined whether moderate intensity leg exercise immediately after resistance training influences the arm training response of muscle strength and hypertrophy. We hypothesized that moderate intensity (55% VO2max) long duration (30 min) cycle exercise subsequent to arm resistance training would interfere with arm muscle hypertrophy and strength. Results indicate that the main effect (time) was observed in increases of CSA and 1RM using 2-way ANOVA. In addition, no interaction effect was observed in any of the measured parameters. However, significantly higher increases in the magnitude of CSA changes were observed in the SEP group compared with the CT group. In addition, the SEP group had higher effect size of CSA increases than the CT group (0.84 vs. 0.45). No statistically significant VO2max improvement occurred after 8 weeks of concurrent training with 30 min of moderate intensity cycling at 55% VO2max in either group. Interestingly, there was no statistically significant difference in the % change in 1RM between groups, but there was a substantial difference in the effect sizes between groups (SEP, 0.91 vs. CT, 2.38). Our results showed that statistically significant increases of muscle CSA (12.1% vs. 5.0%) and strength (19.8% vs. 24.3%) were observed in the SEP versus CT groups, respectively. A recent review indicated that interference effects of concurrent training are associated with training variants such as exercise modality, frequency, and duration of endurance training (Wilson, Marin et al., 2012). This review also reported that, even if interference was observed, concurrent resistance and endurance training induced statistically significant muscle hypertrophy, strength, and power. Wilson et al. (2012) also reported that concurrent resistance and endurance training on the same day resulted in reduced effect size of muscle hypertrophy (0.80 vs. 1.06), strength (1.28 vs. 1.36), and power (0.36 vs. 0.47) compared to concurrent resistance and endurance training performed on separate days. Cantrell et al. (2014) examined the chronic effect on muscle strength and hypertrophy of concurrent strength and sprint interval training on separate days. Thus, our data and previous studies (Wilson et al., 2012; Cantrell et al., 2014) may suggest that endurance training, regardless of exercise intensity and muscles trained, does not impair anabolic adaptation to resistance training, if concurrent strength and endurance training are carried out on separate days. Future study is necessary to confirm the effects of different intensities on concurrent interference. In the present study, a 12.1% change of muscle CSA was observed in the SEP group after an 8-week training session. The percent change of CSA in the SEP group was similar to that previously reported for 8-week training periods in the Japanese population (Kikuchi et al., 2015). In contrast, the change rate of 5.0% in the CT group was significantly smaller than that of the SEP group. Since the change rate of the SEP group is comparable to usual muscle hypertrophy seen with 8-week resistance training, the smaller change in the CT group suggests that concomitant leg exercise interfered with upper-body resistance training, although statistically significant muscle hypertrophy and strength gain was induced. Our previous study (Kikuchi et al., 2015) showed that sprint cycling interval training subsequent to upper-body strength training (arm-curl) was associated with systemic interference of muscle hypertrophy and strength gain. There is a strong possibility that aerobic leg cycling training subsequent to arm resistance training systemically interferes with muscle hypertrophy induced by arm resistance training. In the present study, the data again indicate that systemic interference was observed even when the exercise consisted of moderate intensity (55% VO2max), long duration (30 min) cycling training immediately after upper-body strength training; however, duration and frequency of endurance training in the present study seemed to be low for VO2max improvement (Swain et al., 2002). These results might depend on a higher magnitude of blood flow redistribution in moderate intensity continuous exercise, such as 30 min, compared with the short duration of repeated sprint exercise, even when post-exercise oxygen consumption is included. Previously, we hypothesized that phosphocreatine (PCr) recovery in strength-trained muscle was retarded due to blood redistribution for subsequent leg exercise. Increased blood flow in arm muscles is important not only for early recovery of PCr but also for muscle development after strength training (Stebbings et al., 2013). Blood flow might be decreased in the arm during lower extremity exercise due to redistribution (Kagaya and Homma, 1997). Therefore, it is reasonable to consider that the recovery of PCr concentration after resistance training in upper-body muscles might not be sufficiently achieved when lower-body endurance exercise is performed immediately afterward. Alternatively, chronic adaptation of the cardiovascular system for aerobic training might be due to different mechanisms. Pogliaghi et al. (2006) reported that 12-week leg cycling training in healthy elderly subjects significantly elevated VO2peak of arm cranking exercise and vice versa. The same cross-transfer effects in young men were also reported by others (Tordi et al., 2001). These authors discussed cardiovascular adaptation, especially in central, which may contribute to the transfer effect. A recent meta-analysis also demonstrated that low to moderate intensity endurance exercise acutely and chronically decreases blood pressure and arterial stiffness after exercise (Vaitkevicius et al., 1993). Furthermore, aerobic exercise subsequent to resistance training has acute and chronic effects on blood pressure and arterial stiffness (Okamoto et al., 2007). These lines of evidence suggest that, in the resting state, improving cardiovascular function with leg endurance training might enhance local blood circulation in strength-trained arm muscles. Since blood supply is beneficial for muscle hypertrophy (Stebbings et al., 2013), whether chronic changes in baseline circulation have an effect on systemic interference during endurance and strength training should be considered. The present study has several limitations. The sample size was small. As a result, the chance of a type II error occurring might be high. Second, we did not include a control group or strength training only group. Both groups are necessary to clearly investigate systemic interference in concurrent resistance training and endurance training. Lastly, the exercise protocol (arm-curl exercise) was minimal. It could be assumed that greater interference would be found when higher volume protocols are employed, particularly involving large, multi-joint movements. In present study, there was no statistically significant difference in the % change in 1RM between groups, but there was a substantial difference in the effect sizes between groups (SEP, 0.91 vs. CT, 2.38). It was in conflict with previous study using concurrent resistance training and moderate to high intensity endurance training (Wilson, Marin et al. 2012). Future study is necessary to confirm the effects of low to moderate intensity endurance training on concurrent interference for strength gains. |