The objective of this study was to analyze the effects of WBV on VL sEMG amplitude during an isometric semi-squat exercise, using two different frequencies, and to verify the influence of additional filters of sEMG signal characteristics. The results demonstrate that when vibration (30 Hz and 50 Hz, 4 mm peak-to-peak displacement) is added to a half squat isometric exercise, it significant increases VL RMS values, after appropriate signal treatment using specific filters for vibration frequencies (30 and 50 Hz), a significant reduction in RMS values was observed when compared to the unfiltered signal. However, VL muscle RMS values with additional vibratory stimulus still remained superior compared to the condition without vibration, thus rejecting our hypothesis that the benefits would no longer be detected after appropriate signal treatment by removing vibration-induced artifacts. We also found that there were no significant differences in VL RMS values between the implemented frequencies (30 Hz and 50 Hz) during vibration after applying the filters to remove motion artifacts. This data suggests that the proposed exercise including the vibratory platform promotes an increase in VL sEMG amplitude, independent of the implemented frequency configurations. The mechanisms by which vibration causes an increase in sEMG amplitude and the extent to which an exercise protocol with a vibratory platform could elicit such responses of the EMG signal are not clear in the literature (Bosco et al., 1999a; 1999b; De Ruiter et al., 2003; Hazell et al., 2007). Some hypotheses have been raised to explain how the vibratory stimulus added to exercise would increase sEMG amplitude. Reflex muscle contraction in response to type Ia muscle spindle sensitization during vibratory stimulation is suggested to be the main cause of changes in motor unit firing although there is no consistent evidence in the literature for this (Cardinale and Bosco 2003; Cardinale and Lim 2003, Pollock et al., 2012). Similar results have been previously reported regarding an increase in VL muscle activity during vibratory stimulus (Abercromby et al., 2007; Ritzmann et al., 2013 Wirth et al., 2011). Vibrations are external disturbances which come into contact with body structures and are then perceived by the central nervous system, which in turn modulates the stiffness of the muscle groups stimulated. According to Cardinale and Lim (2003), reflex muscle activity can therefore be considered as a neuromuscular adjustment response that minimizes the effect of soft tissue vibrations. It is important to emphasize that these are individual responses which are probably specific to the population, and may be based on mechanical factors and reflexes (Cardinale and Lim, 2003). In contrast to our results, some authors have documented a linearly increased sEMG activity as a function of the vibration frequency (Pollock et al., 2010; Ritzmann et al., 2013). The discrepancies in the findings may be related to methodological contrasts, since these authors used different types of vibration and frequencies ranging from 5 to 30 Hz. In addition, the precautions taken in our study regarding the removal of motion artifacts from the sEMG signal may have suppressed the differences reported by these authors. The spectral analysis of our unfiltered data revealed sharp peaks at the active vibration frequencies and the first three harmonics. The measurement of tonic vibration reflex and neuromuscular activation during WBV is complicated by the common presence of motion artifacts (resulting from electrode/cable movement and near electrical noise) making it difficult to give an exact quantification of electromyographic activity, compromising the quality and reliability of the analyzed data (Abercromby et al., 2007; Fratini et al., 2009; Lienhard et al., 2015a; Ritzmann et al., 2010; Sebik et al., 2013). As previously demonstrated by Fratini et al., (2009), we detected a reduction in RMS values after appropriate signal treatment using specific filters. These findings provide evidence that analysis of muscle activity during vibration, based on the raw sEMG signal, can significantly overestimate the muscle response. Therefore, filtering methods during sEMG signal processing could possibly prevent the misinterpretation of experimental results. Regarding the sEMG signal processing and its interpretation, Ritzmann et al., (2010) suggested that it is not appropriate to determine the filtering methods based only on a qualitative analysis of the spectrogram, since the addition of filters at the peaks corresponding to the excitation frequencies and their harmonics could significantly alter the electromyographic signal. This could impair the contribution of stretch reflexes in the signal, since part of its shape is encoded in the effective distribution of the vibration frequencies. In our study we found that even after the addition of filters at the studied frequencies, the RMS values still remained higher than those observed in the no vibration condition. This suggests that the representativeness of stretch reflexes possibly triggered by vibration does not necessarily occur at the provided stimulus frequencies. These characteristics have also been previously demonstrated by other authors (Lienhard et al., 2015a; Fratini et al., 2009; Sebik et al., 2013; Xu et al., 2015), who suggest that reflex activity during vibratory stimulus is spread over a wide sEMG spectrum. This would favor removal of the peaks caused by the motion artifacts, since most information related to reflex activity would still remain upon being removed from the signal after processing (Lienhard et al., 2015b). It is worth noting that the findings of this study are limited to a single vibratory platform exercise session on healthy and active women. Thus, these results do not apply, for example, to individuals with neuromuscular disorders. Additionally, the exercise was performed in the non-dominant lower limb, which could have required more control and coordination during its execution. Furthermore, considering the magnitude of the increase verified through our results, as well as being suggested by some authors (Wirth et al., 2011), it is important to emphasize that the relevance of these findings should be further investigated in studies involving vibration application in training. Finally, we suggest that future studies assess the effects of different frequency and range settings on muscle recruitment during vibration in both healthy and neuromuscular deficient patients in order to further clarify the possible contributions of whole body vibration. |