Neither of the meta-analyses showed significant overall effects. There seems to be a shortage of high-quality evidence to support effects of movement therapy and training modification based interventions in the context of running-related injury prevention. There was substantial heterogeneity between studies, in terms of participant’s characteristics, intervention types and sample sizes. Moreover, we observed moderate to high risk of bias in most of the included studies. Three of the total six trials were done on military recruits. Only in one study (Bredeweg et al., 2012), the intervention was carried out and concluded prior to running program onset (in which the injuries were tracked). In other studies, intervention and running program began and were concluded simultaneously. Two of the studies (Pope et al., 2000; Rudzki, 1997) in our analysis showed statistically significant preventive effects. Participants were military recruits in both studies. While the stretching intervention by Pope et al. (2000) could be easily utilized by runners, substituting running with weighted marching is questionable. Moreover, caution should be used when extrapolating results from studies conducted on military recruits to civilian runners, since military training includes various other activities, such as hiking, swimming, etc. In addition, the volume of running done by military recruits is relatively low (a single running session does not exceed 8 km), comparable perhaps to low-level recreation runners. Ineffectiveness of certain interventions in our meta-analysis could perhaps be attributed to study design (exercise choice, intertwining of the intervention and the running program, etc.). For instance, Brushoj et al. (2008) had the control group undertake a placebo exercise program. However, some of the exercises performed could have an effect on running cycle biomechanics, and therefore cannot be considered true placebo. Specifically, exercises for strengthening of the trunk flexors and extensors were implemented in the control group, which may have positive effects on trunk stability and consequentially on running technique. Future interventions should be designed more judiciously. The low amount of articles found may be attributed, in part, to the demanding and time-consuming design needed when conducting incidence studies. Assembling a large enough sample size, participant injury tracking, and analyzing the effects of potential covariants are some of the potential barriers to study design and implementation. In the review by Yeung et al. (2011), which included broader spectrum of interventions, only three of the total twenty-five trials included strictly civilian recreational runners as research participants (other populations included military recruits, prisoners and soccer referees). Another consideration regarding trial design is the concomitancy of prevention programs and running. Only in one study (Bredeweg et al., 2012), participants concluded the prevention program and then went on to the running program. In other five studies, intervention and running program were performed simultaneously. The overall higher volume of training may have canceled out the positive effect of the interventions. On the other hand, our goal should be to design an intervention that is applicable either before or during training program. Many runners, especially professionals, may refuse to participate in a running injury prevention program if it ment completely abandoning running for the time being. A good example of a comprehensive intervention was designed and tested by Sharma et al. (2014) on British Army recruits. This study was excluded from our analysis, because only medial tibial stress syndrome incidence was tracked. The authors identified at-risk recruits via a baseline plantar pressure assessment. The experimental group received running gait retraining, neuromuscular control exercises and flexibility training sessions whereas controls received no interventions. Both cohorts performed an identical military training program. Participants in the experimental group had a reduced relative risk of developing MTSS versus controls. Future, prospective investigations conducted in a civilian population are warranted to assess the generalizability of these findings. We believe that the best clinical approach for now is to identify and directly treat the major risk factors for running-related injuries of each individual. Much more evidence is present for effectiveness of interventions to target specific risk factors. For instance, intervention by Snyder et al. (2009), which consisted of three single-legged exercises (two hip rotations and pelvic rotation) significantly lowered the level of foot pronation during stance phase. Ground reaction forces can be substantially lowered with gait retraining methods (Crowell and Davis, 2011). To form a universal preventive exercise program for runners, more randomized controlled trials or prospective cohort studies are being desired to evaluate the effect of interventions on running-related injury risk. To begin with, we again recommend revisiting trials evaluating risk factors for running-related injuries. Findings of such studies should serve as basis for designing interventions for further trials. Secondly, studies investigating the effects of various interventions on previously identified risk factors should be reviewed and more should be designed and carried out. Integration of findings from both types of studies mentioned should lead to a design of comprehensive, judiciously designed interventions, which should then be tested with incidence studies. |