Research article - (2017)16, 521 - 526 |
The Effect of Respiratory Muscle Training on Fin-Swimmers’ Performance |
Jana Vašíčková, Kateřina Neumannová, Zbyněk Svozil |
Key words: Respiratory muscles, muscle strength, ventilatory parameters, fin swimming, experiment, young athlete |
Key Points |
|
|
|
This randomised, evaluator-blinded, controlled crossover experiment was conducted at the Faculty of Physical Culture, Palacky University in Olomouc, Czech Republic. |
Participants |
A group of young Czech fin-swimmers learned in advance basic information about the experimental procedure and the purpose of the present study. We obtained signed approval from the participants and their parents together with completed personal questionnaires and the study was approved by the Faculty Ethical Committee. The mixed-gender group of 28 youth swimmers was randomly divided into an experimental (EG; n = 14) and a control group (CG; n = 14). Each fin-swimmer had to choose an envelope, which contained either number 1 or number 2. Fin-swimmers who chose an envelope with number 1 were assigned to the experimental group while fin-swimmers who chose an envelope with number 2 were assigned to the control group. Inclusion criterion for both groups was participating in fin-swimming training in a swimming Club twice a week for at least two years. The exclusion criteria for both groups were any kind of chronic or acute diseases to avoid the possible effect of diseases on fin-swimmers’ performance and RMS which could negatively affect the results of this study. After a preliminary examination and the first month of training, they were reduced to 20 participants (EG: n = 12; average age: 12.0 ± 1.7 years; height: 1.58 ± 0.11 m; weight: 47.4 ± 10.5 kg) (CG: n = 8; average age: 11.5 ± 2.4 years; height: 1.53 ± 0.18 m; weight: 49.6 ± 17.0 kg) ( Those in the EG performed regular swimming training with daily RMT for 1 month. Participants in the CG had only regular swimming training. After the EG finished the experimental training, ventilatory parameters and fin-swimmer discipline were measured in both groups. After 1-month washout period, the CG started the experimental 1-month training with breathing devices during regular swimming training. Final assessment was same in both groups as the initial assessment. |
Measurements |
Each participant used both respiratory devices every day. RMST involved 10 repetitions of maximal inspiration with the Threshold IMT and 10 repetitions of maximal expiration with the Threshold PEP wherein the participant had to overcome a given threshold and sustain to generate flow (McConnell and Romer, Participants recorded each training day into a dairy with notes about their feelings during RMT. |
Data analysis |
We obtained data from preliminary, post, and last examinations of maximal inspiratory and expiratory mouth pressures and analysed the average values. Data were expressed as a percentage of the norm. For underwater swimming, we analysed the length in metres (median and interquartile range). For comparison of the values from the same group (repeated) we used the Wilcoxon signed-rank test and the effect size coefficient d [d ≥ 0.80 – large effect; d ϵ < 0.50-0.80 ) – moderate effect; d ϵ < 0.20-0.50 ) – small effect] (Cohen, |
|
|
Ventilatory parameters |
Ventilatory parameters reached normal values in both groups. In the EG, all ventilatory parameters were higher after RMT but the improvement was not significant ( |
Maximal inspiratory and expiratory mouth pressures |
From the preliminary examination and the comparison with predicted values for a healthy population, 75% of participants reached the values above 100% of PImax and 46% of participants reached the values above 100% of PEmax. Only 7% of participants reached lower PImax values than 80% of predicted values, and 21% of participants had reduced strength of expiratory muscles. In the EG, after a month of RMT PImax value increase significantly (20.8%) and PEmax value increased by 10.6%, which meant that strength of inspiratory and expiratory muscles improved ( In the CG, after the first month of normal water training, we observed a non-significant increase in the inspiratory parameters PImax, but a small negative effect in the expiratory parameters PEmax that decreased. When we compared all values of PImax and PEmax (pre, post and last) between EG and CG we found large effect in PImax parameters after first month (post: d = 1.28) and small effect after the second month (last: d = .49); in PEmax parameters we found medium and large effect in post and last measurements (post: d = .49; last: d = 1.19). |
Sport performance results |
Differences in the AP max in EG were significant, had a large effect size between the pre- and post-measurements. The length the fin-swimmers were able to swim for one inspiration increased by 11.36 metres (27.4%). At the last measurement, the results were slightly worse but compared to the preliminary and last measurements, the difference was significant, with a large effect size (9.45 metres) ( In the CG during the first month of training only in the swimming pool, we observed significant improvement in the average length, by 3.37 metres. When comparing preliminary testing and the last measurement after a month of additional respiratory training in the CG, the difference was even more significant, with a large effect size. The length of the distance increased by 9.12 metres (20.7%). Despite a small sample, we tested also gender differences in AP max. In EG we did not find any significant differences between girls and boys, small differences were found only in CG in second measurement (post) in AP max (p = 0.047). This small variety cannot be probably attributed to gender and hormone influence. From the diaries recorded by participants every training day, we gathered information that the EG met 95.67% of the training requirements for RMT and the CG met 87.43% of them (the maximum was 28 times). The reasons for not completing the 100% were forgetting, illness, not enough time, school duties, fatigue, and holidays. |
|
|
To our knowledge, this is the first study to determine the effect of RMT in young fin-swimmers. The main aim of our study was to examine the response to RMT in young fin-swimmers on their performance in AP max. Our study confirmed the positive effect of RMT on swimming performance under water and on respiratory muscle strength of young fin-swimmers. It is important to note that even if RMT is not a standard part of training for fin-swimmers, their breathing is very important. It is well documented that RMT as a part of comprehensive treatment in patients with breathing problems improves exercise tolerance, increases fitness, increases RMS, improves ventilatory parameters and reduces breathing problems (McConnell, |
Impact of respiratory muscle training on respiratory muscle strength |
Although we assumed that RMS would be sufficient in fin-swimmers, not all participants reached PImax and PEmax values higher than 80% of predicted ones. From this perspective, it can be very beneficial to assess RMS in fin-swimmers to be able to prepare targeted individual training programs for them. We confirmed that RMT improved RMS in young fin-swimmers. All of them reached normal values of PImax after RMT. Only two persons (10%) had slightly decreased PEmax after RMT in comparison with results at baseline assessment, which confirmed decreased PEmax in 21% of fin-swimmers. PImax increased by 20.8% in the EG group after RMT and PEmax increased by 10.6%, whereas in the CG, only 1.5% change was noted for PImax. Furthermore, PEmax decreased by 5.15% in the CG. Contrarily, 13.4% and 23.1% were noted for PImax and PEmax, respectively, in the CG after finishing their RMT program. Significantly improved RMS remained in the EG also after two months, when the experiment had finished. Our results are in accordance with results of previous studies, which confirmed the positive effect of RMT on RMS in competitive swimmers and divers (Kilding et al., |
Impact of respiratory muscle training on swimming performance |
We confirmed not only a significant improvement of RMS after RMT, but also an improvement in AP max after a combination of RMT with regular swimming training. The level of physical fitness does not play any role because respiratory muscle performance improves to a similar extent with all the levels of fitness (Illi et al., EG significantly improved the length of AP max not only immediately after the 1-month experiment (27.4% and 20.7%) but the effect lasted for a longer time (23% in the EG). Similarly, Lindholm et al. ( The effect of improved sport performances could have been also influenced by the duration of the training period or the training intensity. We did not study improvement in each participant separately as some could have showed greater improvement than others could. Their training regime was the same but some other factors, such as age or physical fitness level (Illi et al., The results of this study indicate that targeted RMT improves underwater fin-swimming performance in AP max according to increased RMS and improved respiratory muscle performance. For fin-swimmers, the experiment extended the possibilities for targeted sport training that was focused not only on swimming performance and general physical fitness but also on respiratory performance. The number of participants corresponded with the size of a sport club in this age category. Even though the sample was not large to obtain reliable results, we randomised participants into two groups and the crossover study was evaluator-blinded. In addition, young age category can be seen as an advantage of our research. Further work can focus on other age categories with regard to gender. |
Conclusions |
In conclusion, 4 weeks of respiratory muscle endurance and strength training increased respiratory muscle strength and had a positive effect on the swimming performance in fin-swimmers. This study enables coaches and others interested in fin-swimming training to expand their knowledge and training methods, which can positively influence the athletic performance of young fin-swimmers. |
ACKNOWLEDGEMENTS |
We would like to thank Mrs Jitka Dostalova for preparation of fin-swimming training program. The study was in accordance with the ethical and law standards on human experimentation and the institutional ethical board approved the study. Authors declare that there is no conflict of interest. The study was supported by the project No. CZ.1.07/2.3.00/30.0004. |
AUTHOR BIOGRAPHY |
|
REFERENCES |
|