In the NC condition, RF and VL activation significantly increased in the push phase compared to the recovery phase (p = 0.002, η2 = 0.683 and p = 0.006, η2 = 0.586 respectively), whereas BF activation was significantly greater in the recovery phase (p = 0.033, η2 = 0.413). In the IC condition, VL showed a significantly greater increase in the push phase (p < 0.001, η2 = 0.790). Also in the IC condition, no difference in activation increase was found between the push and recovery phases for the RF and BF, meaning that they increased proportionally in both phases. All other muscles exhibited no significant changes between phases (Figure 4). The purpose of this study was to determine if there are differences in trunk ROM during a graded exercise test when cycling with IC compared to NC, and how these differences change with increasing external load and fatigue. Another purpose of this study was to determine if there are differences in bilateral muscle recruitment patterns between the two conditions during the same graded exercise test. It is important to understand these differences as there may be injury risks associated with them, and it is crucial to evaluate the potential for IC to be used as a safe and effective training tool. The results from this study indicate that trunk ROM when cycling with IC does not differ from trunk ROM during NC cycling, with the exception of lateral flexion to the right, where a small increase in angle is seen in the IC condition. However, the magnitude of this angle increase is very small (< 1°) and it can be concluded that the overall gross kinematics of the trunk are upheld when cycling with IC. These findings are contrary to the hypothesis that IC cycling would cause an increased ROM in the trunk. This is important, as causation of back pain and injury has been studied in the workplace, and it was concluded that deviations to either side beyond the risk neutral zone (20% deviation from mid-range) is considered hazardous (Kumar, 2001). Therefore, as trunk kinematics when cycling with IC does not differ from NC cycling, there is no greater risk of low back injury or pain when cycling with IC. In addition, as participants could not reach the same external resistance with IC, it is possible that there was less stress on their lumbar spine at volitional fatigue compared to NC cycling. The findings that sagittal trunk flexion increases with fatigue when cycling with NC agrees with previous research (Dingwell et al., 2010). However, the current study completed a three-dimensional kinematic analysis of the trunk and it can be concluded that, along with increased flexion, there is a greater ROM in terms of lateral flexion to the right (< 1.0°) and left (1.6°), as well as transverse rotation to the right (1.7°) and left (1.5°). This effect can be attributed to increased fatigue levels, as previous research found no effect of increased work load on three-dimensional trunk kinematics (Bini et al., 2016) when fatigue was not a factor. The increased magnitude of trunk angle could cause a greater stress on the lumbar spine, and increase the risk of low back pain in cyclists. This effect on the trunk would be similar to the upper limbs, as it is known that joint moments of the upper limbs increase with external load (Costes et al., 2016). More research on the interaction between external load and low back joint moments is warranted. In general, muscle activation increased from beginning to end – which was expected since it is well documented that sEMG RMS value increases with oxygen uptake and during incremental cycling (Hug et al., 2003; 2004). However, during IC cycling, although the RF and BF exhibited an overall increase in activation with an increase in external load, there was no significant difference between the push and recovery phases, which suggests that the use of IC causes a more constant and sustained activation of those muscles throughout the entire pedal cycle. This is not consistent with the hypothesis that there would be an increased change in activation in the IC condition; however, the findings from this study can be explained by the constant activation requirement of these muscles needed in the recovery phase, due to the lack of assistance from the contralateral leg in the push phase. A component of muscular endurance is the ability for the muscle to sustain a contraction for an extended duration (Swain and Brawner, 2012). This constant contraction throughout the cycle is demonstrated within the IC condition in the RF and BF, as there was no difference in activation increase from beginning to end between phases. Meanwhile, in the NC condition, there was a greater activation change in the push phase than the recovery phase for the RF, and greater change in the recovery phase for the BF. This indicates that IC cycling more closely represents an isotonic exercise, defined as resistance to the muscles being constant throughout the full ROM (Heyward and Gibsonn, 2014). The effect of isotonic training on muscular endurance during cycling has not been studied, and more information on that topic is needed to describe the performance outcomes that may result from training with IC. Cycling with NC, however, differs from this constant resistance, as each leg is dependent on the other, and a resistance force is applied by the leg in the recovery phase causing resistance to fluctuate around the full ROM (Bini et al., 2013). Building endurance of the RF and BF in particular is important, as they are involved with hip and knee flexion, respectively, which is required in the recovery phase of the cycle. Additionally, this could improve the cyclist’s ability to pull backwards on the pedal at the bottom of the pedal cycle, which has been shown to increase the tangential force required to turn the crank (Bini and Diefenthaeler, 2010). The asymmetry between legs when using IC was the same as NC cycling in all muscles, except for the TA in the push phase of the cycle, where there was greater asymmetry in the NC condition. This means that any asymmetry between limbs that may have occurred was not due to the change in crank type in all muscles except for TA. In fact, IC may reduce asymmetry in the TA in the push phase of the cycle. A reduction of asymmetry would lead to a more consistent training between legs, and could contribute to a more symmetrical cycle pattern, effectively reducing the risk of overuse injuries in training (Smak et al., 1999). This is an issue specifically related to cyclists, as increasing TA activation would exert more force on the ankle, which is a known risk factor for Achilles tendonitis - the most common overuse ankle injury among cyclists (Cohen, 1993). There were several limitations that existed in this study. First, for sEMG processing, there was no normalizing factor between testing days. This means that sEMG between conditions had to be analyzed as a percentage change from beginning to the end of the trial. Second, although there was a familiarization period during the warm-up, and participants only completed the trial after it was clear they had become accustomed to the independent crank design; there may still have been some changes in cycling due to inexperience with IC. Additionally, the graded exercise test was designed to push the participants to the point of volitional fatigue. This allowed a comparison of movement and sEMG at volitional fatigue. However, comparisons could not be made at specific workloads, as every participant reached volitional fatigue at different times. Future research could include a similar comprehensive analysis of kinematics following a training period with IC compared to NC. This would provide valuable longitudinal information that would be relevant to cyclists using IC as a long term training tool. |