Research article - (2018)17, 205 - 215 |
Validity and Reliability of Surface Electromyography Measurements from a Wearable Athlete Performance System |
Scott K. Lynn1,, Casey M. Watkins2, Megan A. Wong3, Katherine Balfany1, Daniel F. Feeney4 |
Key words: Wearable technology, electromyography, EMG, Athos |
Key Points |
|
|
|
Subjects |
Twelve healthy subjects (6 males, 6 females, see |
Set-up |
For each subject, anthropometrics (hip and waist measurements) were recorded to determine the appropriate Athos gear size. Each subject used the same gear throughout the whole study, and gear was washed following the last trial of each week. SEMG measurements from the vastus lateralis, vastus medialis and bicep femoris were collected with both Athos and the Biopac electrodes (Biopac Systems, Inc., Goleta, California) simultaneously. The Athos compression garments were fit to each subject to ensure the electrodes embedded in the garments were directly over the muscle bellies of vastus lateralis, vastus medialis, and biceps femoris. Athos electrodes are designed to provide a bipolar differential EMG measurement with an interelectrode distance of 2.1 cm ( |
Experimental procedure |
The study protocol consisted of 1 baseline testing session and 6 repeated testing sessions ( |
Signal acquisition and processing |
Athos provided sampled sEMG data at 1kHz, no gain was applied to the analog signal and only an anti-aliasing filter was applied prior to sampling. The anti-aliasing filter prevents high frequency noise greater than 500Hz from aliasing into the sEMG spectrum. Since the sEMG spectrum generally does not extend beyond 500 Hz the anti-aliasing filter will have negligible influence on the sEMG signal. Biopac data was sampled at 1024 Hz, the analog signal was amplified by a factor of 1000 and a bandpass filter with cutoff frequencies at 10 Hz and 500 Hz were applied prior to sampling (EMG100C; BIOPAC Systems Inc., Goleta, CA, USA; bandwidth = 10–500 Hz). After Athos and Biopac signals were sampled and aligned to 1kHz, both were processed with the same set of filtering steps to ensure an equivalent spectrum of the signal from each system and to produce an envelope representing the sEMG signal power. Filtering included a linear bandpass filter with center frequency at 120 Hz, linear notch filter at 60 Hz, rectification and linear envelope. The linear envelope was then downsampled by a factor of 25 and further smoothed using a 16 sample root mean square (RMS). The processing steps described above are supported as a method of calculating an amplitude representation of the sEMG signal and described in ‘Guidelines for Reporting SEMG Data’ (Merletti, Athos data includes a measure of contact quality, which is estimated from the amplitude of a high frequency signal outside of the sEMG frequency spectrum. This signal was evaluated to determine the quality of contact of each of the Athos electrodes for each trial. Each set of data comprised knee extension and flexion repetitions at a given MVC level. If the amplitude of the high-frequency contact signal exceeded a given threshold for over 10% of the set, that set was determined to be poor contact quality. In total 18% of the sets were determined to have poor contact quality and were not included in further analysis. The Biopac sEMG data and HUMAC dynamometer data was collected with the same software (AcKnowledge, v.3.8.1, Biopac Systems Inc.) and were therefore aligned in time and at the same sampling rate of 1024 Hz. To align the Athos data to the Biopac and dynamometer data we compared the standard deviation from a 200 ms sliding window to the standard deviation of the resting noise (Dideriksen et al., After alignment a plot was generated for each set to visually evaluate the resulting Athos and Biopac alignment as well as to check for any other test issues. An example plot is shown in After the datasets were aligned, parameters were calculated for each repetition based on the processed RMS of the sEMG signal. First the three repetitions of each set were segmented for the sEMG and torque time series data using the zero crossings of the dynamometer arm velocity. For each segmented repetition parameters were calculated as dependent variables for the processed RMS waveform of the sEMG signal including the 95th percentile magnitude, peak magnitude, and sum of the total sEMG over the repetition. The same parameters were also calculated for torque over each repetition. The 95th percentile and peak magnitude both represent a peak amplitude parameter taken from the processed sEMG waveform over each repetition with the 95th percentile magnitude more resilient to large magnitude sample outliers during the repetition. The sum represents the accumulation of the sEMG signal over the repetitions. The 95th percentile, peak and sum dependent variables for both sEMG and torque across all repetitions, sets and subjects were then used to evaluate the validity and reliability of the new wearable system (Athos) as compared to the gold standard research grade sEMG system (Biopac). |
Data analysis |
We evaluated two measures of validity between Athos and Biopac. First, we compared the characteristics of the RMS sEMG signal for each muscle, speed, and percent MVC between the two systems. Secondly, we compared the strength and directionality of the relationship between sEMG metrics and torque output between Athos and Biopac. To evaluate differences between sEMG metrics obtained from Athos and Biopac, we used a linear mixed model to evaluate if there was a significant effect of system (Athos or Biopac), session (2-7), speed, or percent MVC on each dependent variable extracted from the sEMG waveforms collected. We used post-hoc Bonferroni adjusted p-values for pairwise comparisons. This model was estimated separately for the three-dependent variables: 95th percentile, peak, and sum of each repetition within a set. The combination of the two quad muscles measured, vastus lateralis and vastus medialis, were summed as an additional muscle grouping for comparison. We evaluated differences in sEMG characteristics (95%, peak, and sum) by creating a linear mixed model ANOVA with subject, speed, and muscle as independent variables and sEMG metric (95%, peak, or sum) as the dependent variables between Athos and Biopac. The linear model was calculated using R (R core team) using the lme4 package (Bates et al., To assess the strength of the relationship between torque and EMG for both systems, we fit subject specific regressions of sEMG and torque output for each muscle and speed combination that spanned 50, 75 and 100% MVC torque. These all ended up producing linear relationships. To assess reliability first the repetitions were constrained to within +/-10% of the mode torque for each subject, speed and effort combination. This was necessary to ensure day-to-day variations in EMG amplitude were not due to differences in torque output. During the test protocol a range of effort levels were measured by asking the subjects to perform the movement at 50%, 75% and 100% MVC torque. The reliability of the EMG metrics was then accessed by calculating the variation in repetition amplitude in two ways, first as the coefficient of variation (standard deviation divided by the mean), and second as the standard deviation of the normalized repetition amplitude. Metrics based on sEMG amplitude are often normalized and presented as a relative measure against a baseline, such as one repetition maximum (Merletti et al., |
|
|
Validity |
The validity results comprise two main findings. First, there is not a significant main effect of system (Athos or Biopac) on sEMG characteristic (95%, peak, or sum) and the relationship between torque and EMG is not significantly different between Athos and Biopac. A 2-way mixed model ANOVA indicated significant main effects of speed ( A model between torque and sEMG was calculated between all sEMG metrics (95%, peak, sum), muscles and speeds separately and was statistically significant suggesting a significant linear relationship in our data set between torque and sEMG. The coefficient of determination ranged from 0.15 to 0.67 for all subjects. Critically, there was no significant difference in the strength of the relationship between systems (Wilcoxon Signed Rank p-values shown): 95% (BF: p = 0.41, VL: p = 0.45, VM: p = 0.63, VL+VM: p = 0.91), peak (BF: p = 0.42, VL: p = 0.22, VM: p =0.29, VL+VM: p = 0.56), and sum (BF: p = 0.64, VL: p = 0.21, VM: p = 0.29,VL+VM: = 0.09). |
Reliability |
The coefficient of variation of the 95th repetition amplitude across trials is shown in The standard deviation as a percentage of MVC amplitude is shown in |
|
|
We investigated the validity and reliability of the Athos sEMG system to characterize muscle activation patterns during isokinetic knee extension and flexion. We found strong consistency with a standard research grade EMG system (Biopac), a strong relationship between force output and normalized sEMG measurements from both Athos and Biopac, and moderate to high test-retest reliability of the Athos electrodes. |
Validity |
To assess validity of Athos compared to Biopac, we investigated differences in sEMG metrics at each speed, muscle, and percent MVC combination. There was no significant difference in signal repetition amplitude (95%, peak, or sum) measured between systems across all muscles measured. Based on a post-hoc power calculation using the standard deviation and mean values for each EMG metric and our sample size, we calculated a minimal detectable difference in EMG output of 0.3 standard deviations from the mean. It is unlikely that small differences (near 0.3 SDs) are significantly meaningful in an athletic setting. Lastly, differences in the alignment of the iliotibial tract and subcutaneous tissue composition may affect the individual quadriceps recording sites, while summing them removes most of this variability in EMG signal content. Therefore, it is remarkable both systems had no significant differences in normalized EMG output for any metric. There was no significant difference in the strength of the relationship between sEMG metrics and torque output between systems. In our data set, both Athos and Biopac sEMG metrics were linearly related to torque output longitudinally across the six trials and days. Correlation coefficients presented in The significant linear relationship and correlation coefficients demonstrate the ability for Athos to capture the same relationship between muscle activation and torque output over a range of speeds representing controlled and high velocity movements experienced in sport. Further, even at the highest speed, which represents dynamic movements experienced in sport, the strength of correlation between sEMG and torque was comparable between systems. The Athos electrodes do not use an adhesive to reduce electrode movement and corresponding artifact and yet the strength of correlation is comparable during high velocity movement. The comparable reliability between Athos and Biopac at higher velocities supports the efficacy for Athos to be used to measure dynamic sport movements without sacrificing measurement accuracy compared to a research grade system. It’s important to note that while the strength of correlation is comparable, 18% of sets were removed due to unreliable contact quality from at least one of the muscles measured with Athos. The sets removed primarily occurred at the start of the trial for a given day. One possible explanation is that in these cases the warmup was not sufficient to allow the impedance between the sensors and the skin to decline, thereby improving contact quality. This does emphasize that while Athos demonstrates comparable correlation during high velocity movements, this result was based on good contact quality sets only. A sufficient warmup and settling period may be required before valid and comparable measurements are provided. The relationship between sEMG amplitude and force output is still debated and likely depends on a number of factors including force output level and muscle physiology such as fiber type and size diversity (Alkner et al., The results of this study support the conclusions of Staudenmann et al., ( |
Reliability |
There is not a statistically significant difference in reliability within or among sessions between Athos and Biopac. The coefficient of variation of sEMG amplitude is only 1% higher from Athos for both the bicep femoris and vastus medialis and 7% higher for vastus lateralis. sEMG reliability has been evaluated in previous studies, for example Yang and Winter ( Results from the present study compare well with reliability reported by Yang and Winter ( It’s important to note that variability measured from any sEMG measurement includes measurement error, movement variability, and physiological variability. Measurement error includes variability introduced by the measurement system, such as noise caused by electrode movement during dynamic contractions and differences in electrode positioning, or the fact that the subjects were seated, and the hamstring electrodes may have been compressed between the seat and the leg. Movement variability is introduced by differences in how the subject performs the movement, differences in body position causing differences in muscle recruitment. Physiological variability is introduced by differences in the physiological state of the subject within a trial and between trials. The goal of this study was to examine the differences in measurement errors between the Athos and Biopac system, therefore every effort was made to reduce the movement and physiological variability. The movement variability was reduced by using an isokinetic dynamometer and following strict manufacturer’s recommendations in setting the subject up before every trail. Physiological variability was reduced by testing each subject at the same time on subsequent days, maintaining consistent rest periods between sets and having subjects note their sleep, hydration, nutrition, and exercise between each testing session. The individual components of the variability cannot be separated, but by comparing Athos and Biopac we can interpret differences between the measurement errors of each system and evaluate the performance of Athos as compared to a traditional research grade EMG system. We expect movement and physiological variability to have equivalent impact on Athos and Biopac data and therefore differences in variability should reflect differences in measurement error of the two systems. The small difference in overall measurement variability between Athos and Biopac suggests that Athos does not introduce significant measurement variability despite the form factor of the Athos system. Athos electrodes are built into compression apparel reducing complexity and setup cost by not requiring adhesive electrodes to be re-applied after each trial, careful skin preparation and additional reference electrodes. While Athos EMG measures compare well with those of a research grade EMG system, there is a moderate day-to-day variability inherent to EMG recording that is influenced by the measurement error, movement and physiological variability described above. Even when movement is controlled, as in this study, there may be variability in muscle activation strategies across muscle groups that may influence the variability in amplitude from a specific muscle across trials. For example, in this study at 100% MVC a common activation pattern measured was an increase in left gluteus maximus and bicep femoris activation during right concentric knee extension. One explanation may be that the left gluteus maximus and bicep femoris are activated to generate torque about the hip to support additional force during higher knee extension loads and this may influence the activation and variability measured from the right quads. Further research is needed to understand how these different forms of variability would be represented on athletes outside of the lab and how it would influence comparisons for an athlete across training sessions. From this study it was demonstrated that in a controlled setting Athos has comparable reliability to a research grade system. Based on this result, Athos has the potential to measure the movement and physiological variability outside of the lab without introducing measurement error as compared to a research grade system; although this requires further testing to confirm. The ability to collect valid and reliable sEMG information in any setting can be a valuable tool in understanding how athlete’s movement and physiology is changing across training sessions. This may also have clinical and ergonomic uses in tracking muscle activation patterns in patients and workers during work tasks and activities of daily living. |
|
|
This study has demonstrated that over a range of dynamic contractions Athos provides measures of sEMG that are consistent with controlled, research grade technologies and techniques. There were no significant differences between normalized EMG amplitude or in the strength of the relationship between sEMG and torque output between Athos and Biopac. Also, no significant differences were seen in variability between Athos and the research grade system. The close comparison demonstrates that Athos does not add significant measurement error that limits application compared to the research grade system. The overall variability measured from both Athos and Biopac contains multiple components. The goal of Athos is to surface the physiological and performance variability down to individual muscles and to do so not just in the lab, but across an athlete’s training in the weight room, training room and on the field, pitch, court or track. Many studies have looked at the efficacy of applying sEMG measurements in sport (Clarys and Cabris, |
ACKNOWLEDGEMENTS |
The authors would like to acknowledge all those that participated in the study. Three of the authors (Lynn, Balfany, Feeney) are consultants for the company who make the wearable EMG device (Mad Apparel Inc., dba Athos). The other authors have no conflicts of interest to declare. All experiments comply with the current laws of the country. |
AUTHOR BIOGRAPHY |
|
REFERENCES |
|