The main finding of this study is that the PP1 is a highly valid and reliable tool for testing and training purposes in cycling under all assessed workloads (100 W to 500 W), cadences (70, 85 and 100 rev·min-1) and pedalling positions (seated and standing). To our knowledge, this is the first study that validates the PP1, which is a portable power meter with some important advantages with respect to other portable devices such as the use of the cyclist’s own bicycle, maintaining the usual riding position and the wheelset and the crankset of the bicycle, the reduced extra weight compared to other high performance portable power meters (installed at crankset or hub), and finally the ease of installation, which allows exchanging it between various bicycles. Nevertheless, it is important to be conscious that this portable power meter slightly underestimated the power output data in a directly proportional manner to the pedalling cadence (from -2.4 W at 70 rev·min-1 to -7.3 W at 100 rev·min-1), independently of the cycling workload or pedalling position. This fact could be due to the strain gauges’ sensitivity, or due to the signal processing (amplification, filtering, analog to digital conversion and data analysis). Laboratory based ergometers (e.g., SRM, Lode, Velotron, Wattbike) are still considered the “gold standard” power meters due to their high levels of validity and reliability (Abbiss et al., 2009; Earnest et al., 2005; Hopker et al., 2010; Hopkins et al., 1999; Jones, 1998; Paton and Hopkins, 2001; Reiser et al., 2000; Wainwright et al., 2017). Thus, for a cycle trainer or power meter to be useful in a research setting it must have similar qualities of measurement. Different researchers have tested the validity of other mobile ergometers such as Tacx Fortius (Peiffer and Losco, 2011), KICKR Power Trainer (Zadow et al., 2017; Zadow et al., 2016), LeMond Revolution (Novak et al., 2015), and Elite Axiom Powertrain (Bertucci et al., 2005a), as well as other mobile power meters, including PowerTap Hub (Bertucci et al., 2005b; Bouillod et al., 2016; Gardner et al., 2004) and Garmin Vector (Bouillod et al., 2016; Nimmerichter et al., 2017; Novak and Dascombe, 2016). It should be noted that the SRM, as the reference power meter, is also affected by some measurement error. Jones (1998) reported extremely low variability (± 0.3% and ± 1.0% for two different 20 strain gauge, and ± 1.8% for a 4 strain gauge models), while the accuracy claimed by the manufacturer of these devices is also very high (± 0.5 % and ± 2.5 %, for the 20 and 4 strain gauge, respectively). Additionally, most of these validation studies have used the SRM scientific model comprising 20 strain gauges (Bertucci et al., 2005a, Duc et al., 2007; Jones, 1998) or the SRM professional model (4 strain gauge) (Gardner et al., 2004; Hurst and Atkins, 2006) as the gold standard devices. Despite the fact that, according to the data collected in the present study, there are small but significant differences between the mean power output values obtained by the PP1 pedals and the SRM scientific model, there are highly significant, “near perfect”, relationships (rho ≥ 0.987; p < 0.001) from 100 W to 350 W with seated position at low, medium and high cadences. The previous concordance is reduced for standing, freely chosen cadence pedalling (rho = 0.927; p < 0.001). It is also important to note that this study has found very small bias and SD of bias in the agreement between the SRM and PP1 power output data, as well as between SRM and PP1 cadence (from -2.4 ± 4.8 W to -9.0 ± 5.3 W), both for the standing and seated pedalling positions, even though it is known that standing pedalling causes lateral sways and affects the biomechanics of pedalling (Stone and Hull, 1993). These results are consistent but progressive. When used in the laboratory and compared to the SRM crankset, similar mean and SD biases, as well as the 95% limits of agreement data, were reported for other mobile power meters, such as Garmin Vector Pedals (Bouillod et al., 2016; Nimmerichter et al., 2017) (0.6 ± 6.2 W, 11.6 to 12.7 W; -11.6 to 12.7 W, -3.7 to 9.5 W), PowerTap Hub (Bertucci et al., 2005b) (2.9 ± 3.3 W; -3.7 to 9.5 W), and Look Keo Power Pedal (Sparks et al., 2015) (4.6 ± 0.4 W; -15.9 to 13.9 W). Bouillod, et al. (2016) found higher mean and SD biases when the SRM crankset was compared with the Stages (-13.7 ± 12.4 W, -37.9 W to 10.6 W). Paton and Hopkins (2001) suggested that in elite athletes, a magnitude lower than 2% is required to detect changes in performance from an ergogenic or training intervention. Besides, Hopkins (2000) suggested that an 84% confidence interval is a more reasonable threshold than the traditional 95% interval when attempting to detect changes in athletic performance. Based on a workload of 350 W, changes of ≥ 2% (7.0 W) and ≥ 1% (3.5 W) would be required to be confident (84%) that a trained cyclist had changed power output because of a training intervention. When compared to the SRM, the mean error of the PP1 shows that, in the present data, it falls within this range. Based on the current study’s evaluation of the PP1, a mean error of ~2% compared to the SRM would be acceptable for talent identification purposes. These results suggest that the PP1 power meter is sufficiently accurate to track performance changes over time, and thus would serve as an acceptable training tool. Regarding reliability (Table 1), when we compare the PP1 with other mobile power meters from previous studies, mean CVs are similar to these findings. Bertucci et al. (2005b) reported a CV from 1.7 to 2.7% for the PowerTap Hub and from 1.2 to 2.0% for the SRM crankset over a workload range of 100 W to 420 W. The mean CVs reported in laboratory and field trials by Nimmerichter et al. (2017) were 0.95 vs. 1.00% and 2.82 vs. 3.05%, for the SRM and a Garmin device, respectively. These results mean that CV for the SRM and the PP1 in the current study concur with the reliability data from previous studies. Cycling technique and type of ergometer can affect cycling efficiency (Arkesteijn et al., 2013). In our opinion the inclusion of cyclists as participants adds more ecological validity to the real use of the pedals. From this point of view, the reliable results of the current research confirm that this biological variability does not affect the validity of the power output data, nor the cadence, of this power meter. What is more, the pedals and cyclists were tested with three different and representative cadences to analyse if the cadence affects the reliability of the power output and cadence. Besides, the number of participants and their fitness level (i.e., well-trained cyclists) are consistent with other published research studies assessing the reliability and validity of cycle ergometers (Pallares et al., 2016; Passfield and Doust, 2000; Wainwright et al., 2017). It is important to note that PP1 pedals have some limitations in their use, in spite of the practical advantages they offer. As the SRM power meters are checked for validity and reliability against a first principles dynamic calibration rig, the PP1 pedals cannot be easily checked by this method because of the difficulty of applying a known force dynamically to the pedals. The application of the torque at the bottom bracket will not cause any deflection within pedals axles. On the other hand, a static calibration cannot be performed either due to the fact that the PP1 pedals will not transmit any data to a recording device if a cadence reading is not available (Bini and Hume, 2014). As stated earlier, the best current method to assess the variability of the PP1 pedals was to compare them with a scientific model SRM crankset, which has been shown to be accurate and reliable. Additionally, the slope of the power curve cannot be adjusted, meaning that PP1 will always be limited by the factory calibration. Accordingly, PP1 pedals should be checked regularly against a calibrated scientific SRM crankset. If this process is done regularly, PP1 pedals provide an acceptable method of power output measurement and their use in detecting changes in performance and monitoring external training power output is supported. Since the tests were developed with workloads up to 500 W, additional research must be done to test the reliability and validity of the PP1 for sprint cycling tests above 500 W. Also, further research is needed to evaluate this power meter system in field conditions (Bouillod et al., 2016). |