The aim of our tests was to uncover correlations between angular velocities recorded in individual joints and body segments and the racket velocity in several variants of topspin strokes. The results lead to the conclusion that maximal velocities and velocities at impact are very similar, although in all tests the mean velocities at impact were slightly lower than maximal velocities, presumably because contact between racket and ball occurs slightly before maximal racket velocity is reached. It is likely that the racket reaches maximal velocity immediately after the first contact, but still with the ball remaining “at the racket”. We propose that prolonged contact between racket and ball during acceleration increases rotation due to the effects of friction (Lufang et al., 2013). This could be confirmed by using higher frequencies in the motion analysis system. The best subset multiple regression used in the study demonstrated that angular velocity at impact during internal rotation of the shoulder joint (VcontShIE) is strongly correlated with VRmax and VRcont during top-spin forehand strokes. It seems likely that in table tennis internal rotation of the arm in shoulder joint plays an important role in coordination of forehand stroke. Increases in the angular velocity of internal rotation of the arm accompany increases in racket velocity. It is also possible, that the rapid internal shoulder rotation helps to control the ball by ensuring that the ball is “covered” by the racket and extending the duration of contact between racket and ball. Iino and Kojima (2011) emphasized the importance of internal rotation to coordination of forehand strokes in table tennis; they found that advanced players could exert greater torque during internal rotation of the shoulder than intermediate players. The same researchers pointed out that internal rotation of the shoulder contributed substantially to the racket speed at impact (Iino and Kojima, 2009). Researcher in similar sports, such as tennis, have also emphasized the significance of internal rotation (Fleisig et al., 2003; Marshall and Elliott, 2000; Tanabe and Ito 2007). Another finding of our study is that the velocity of shoulder adduction (VcontRShAA) was fairly strongly correlated with racket velocities in FH2. In this test players hit topspin strokes after delivery of a ball with backspin, so greater involvement of the arm adductors at the moment of contact with the ball was required, followed by the adduction movement with shoulder flexion and then changing to abduction in this joint (in the follow-through phase). In four tests, racket velocity was correlated with VminRHFE, i.e. the highest velocity during right hip extension, which presumably increased the upward movement component, as right hip adduction did in the FH2 test (angular velocity in VcontRHAA was also correlated with racket velocities). The presence of angular velocities from the non-dominant upper limb (VcontLShIE, VminLShFE) in the calculation model (especially in FH2) is interesting and may be due to extension of the non-dominant hand arm and internal rotation of the non-dominant shoulder during the stroke to ensure balance. In the FH3 test we found correlations with racket velocities in the cases of VmaxLHFE (maximal velocity of left hip joint flexion), the previously mentioned VminRHFE (maximal velocity of right hip joint extension) and VmaxRAFE (maximal velocity of ankle joint flexion), probably connected with the greater contribution of the transfer of the centre of gravity from the lower limb on the playing side towards the limb on the non-playing side and right hip extension (connected with unloading this limb). Analysis of the correlations of angular velocities in joints and body segments with racket velocities during backhand strokes revealed the specific role of the VmaxRShAA parameter (maximal velocity of the abduction movement in the shoulder joint) in all variants of topspin strokes. Motion of abduction/adduction, driven by rotation of the shoulder girdle towards the playing side (VcontSRot was correlated with racket velocity in two of the tasks) probably influences racket velocity (Table 5). Iino et al. (2008) evaluated the effect of elbow and wrist movements on racket velocity for two variants of topspin backhand. They found that elbow extension affected the forward velocity of the racket and dorsal flexion the upward velocity. Iino and Kojima (2016) also found that the mechanical energy of the racket at ball impact in topspin backhands was mainly transferred by the force and torque of the shoulder. Undoubtedly, according to the principles of proximal-to-distal sequencing and summation of speed, all movements of the elbow, wrist and shoulder when appropriately coordinated influence racket velocity. In our study we found that the movements whose velocities were correlated with racket velocity (arm abduction and shoulder girdle rotation) were those that propelled the more distal segments of the playing limb. It should be stressed that the coefficients R² and β were lower for backhand strokes than forehand strokes, suggesting lower correlations. This is likely to have been caused by the participants’ less frequent use of backhand strokes than forehand strokes, which was due to their varied playing styles and, consequently, varied techniques. However, during forehand strokes the highest values of angular velocities were found for angular velocity of shoulder girdle rotation towards the non-playing side. These patterns of movements and velocities corroborate published studies. Iino and Kojima (2009) found that trunk rotation contributed substantially to racket velocity during topspin forehand strokes. Qian et al. (2016) examined the importance of lower limb joint movements during performance of powerful topspin forehands and found that advanced table tennis players displayed a greater range of hip flexion and external knee joint rotation at the end of the swing phase than less advanced players. They also stressed that advanced players displayed a greater range of hip rotation and hip extension, as well as greater velocities of dorsal and plantar ankle flexion and hip rotation in the forward phase. We were unable to confirm these latter findings, perhaps due to the high variation in angular velocities in our sample. This variation is probably due to the varied techniques used by our sample. This phenomenon is common in table tennis, which is a very complex and varied game in terms of both technique and tactics, as demonstrated previously (Bańkosz and Winiarski, 2017; Munivrana et al. 2015). During table tennis strokes a lack of movement in certain joints can certainly be compensated for by movement in other body segments. The variation in technique can be considered a limitation of our assessments and leads us to conclude that in table tennis the best approach to be modelling movements would be case studies of a small number of champions. It should also be emphasized that the correlations reported here relate the resultant racket velocities. Although separating the three directional components (upward, forward, lateral) would make it easier to detect additional correlations it would increase the already high number of parameters analysed. The results obtained in this study can be used directly in training of both female and male table tennis players. Coordination of topspin forehand and backhand strokes should improve if emphasis is placed on optimising the range and velocity of the movements listed in the study, as this should help to increase racket velocity. Maximal racket velocity and velocity at contact with the ball were very similar, with non-significant differences in the magnitude and time taken to reach these values resulting from acceleration of the racket at the moment of contact with the ball, which is used to increase ball rotation. |