The main finding of the present study was that 4 weeks of a low-volume, high intensity sport-specific strength and conditioning training program, improved physical fitness of well-trained MMA athletes. In contrast, a higher volume “regular” training program, based mainly on circuit training and inducing higher RPE, failed to improve performance in all the tests used. The STG significantly improved all the examined parameters of speed, strength, power and aerobic performance. Maximal strength plays a key role in MMA performance and especially in grappling actions, while it is also important for the development of high velocity qualities (James et al., 2017b; 2018). The large improvements in upper and lower body strength (16-20%, Table 3), indicate the effectiveness of the STG to improve this important quality for MMA athletes and supports the inclusion of strength training using heavy loads in strength and conditioning MMA programs (James et al., 2017b; 2018). The STG program also improved upper and lower limb power, as shown by the 6-7% increase in CMJ peak power and the 6-11% improvement in peak throw velocity of a medicine ball (Table 3). Furthermore, there was a moderate improvement in 10 m sprint time and a large increase of speed in the sport-specific test of 2m take down sprint (22%, Table 3). These improvements in physical fitness qualities related with MMA performance were due to the fact that the STG targeted these qualities by including heavy strength training, plyometric exercises and specific power exercises, as well as sprint training (Table 1). Also, the 13% improvement in estimated VO2max in the STG group is possibly due to the high intensity interval rowing training (McInnis and Gibala, 2017). This rowing interval training may have also contributed to the improvements in leg and arm power (Kendall and Fukuda, 2011). In contrast, the RTG group, which was trained mainly using circuit training, did not improve upper and lower body strength and power, as well as aerobic fitness. The lack of specificity and the excessive fatigue, indicated by the high RPE values (17-18, Table 2), may partially explain the lack of improvement in strength, power and aerobic fitness after 4 weeks of RTG. Thus, according to the above, at least when the target of training is to increase muscle strength and power in trained MMA athletes, circuit type of resistance training, may be ineffective. This type of training may be beneficial for metabolic conditioning (Amtmann and Berry, 2003; La Bounty et al., 2011), but this was not assessed in the present study. An important finding of the present study, was that strength, speed and power performance of the STG athletes, were increased in an absence of an increase in muscle mass. This finding is important because body mass is taken into account for the selection of opponents in MMA fights. It is a common practice for athletes, to try to lose weight prior to the competition by changing their nutritional and physical activity behavior which, in many cases, leads to significant malnutrition, as certain deficiencies in both macro- and micro-nutrient content ensue (Papadopoulou et al., 2017). Thus, a specific strength and power training program, as that used in the present study, is advised for MMA athletes, as in improves speed, strength and power, with no detectable increase in body mass in the 4 week training period. However, significant muscle hypertrophy is observed after at least 18 sessions of resistance training (Damas et al., 2018), and the longer term effects of the program used in the STG group remain to be examined. Physical conditioning training programs of MMAs’ athletes should aim to improve various aspects of fitness, including improvements of anaerobic and aerobic metabolism, and specific endurance (James et al., 2016; Lenetsky and Harris, 2012; Tack, 2013). Thus, training protocols for MMA athletes should take into account the work to rest ratio that is seen in MMA fights (Amtmann and Berry, 2003; James et al., 2016; 2017a; 2017b; La Bounty et al., 2011; Lenetsky and Harris, 2012; Tack, 2013). In the present study, the combination of the specific HIIT and SIT protocols, with the strength/power training, induced the concurrent development of muscle power and aerobic fitness only in STG, as shown by the reduction of the time needed to complete the 2000m rowing test and the increase of mean power and estimated VO2max. In addition, a previous report suggests that the use of a rowing ergometer is preferred for fighters because it improves endurance, aerobic and anaerobic capacity or the arms and legs (Kendall and Fukuda, 2011). Thus, the combination of resistance training with high intensity, low volume HIIT training, resulted in improvements in muscle power, strength and aerobic fitness, without indications of a negative interaction of strength/power and endurance training (Tsitkanou et al., 2017; Wilson et al., 2012). In contrast, no significant differences were found in the RTG, during which participants performed steady pace rope skipping. The regular use of rope skipping by fighters is an important tool to increase upper-lower body coordination, balance and rhythm (Tack, 2013), but may not be as effective for the improvement of cardiovascular fitness, especially in well-trained MMA athletes. In addition, all the guidelines for strength and conditioning in MMA athletes (Amtmann and Berry, 2003; Tack, 2013), suggest rope skipping as a method for plyometric training and coordination only. According to the results of the present study, HIIT rowing training may be more suitable than long duration rope skipping when the aim is to improve aerobic fitness. In the present study, significant relationships were found between percentage changes, from initial to post intervention values, in many performance parameters. For example, participants who demonstrated greater improvements in aerobic fitness tended to have smaller increases in strength and power. It is well documented that strength and power cannot be developed to the same extent in the presence of concurrent aerobic training vs. in the absence of aerobic training (Coffey and Hawley, 2017; Hawley, 2008). Another possible explanation for these correlations may be the initial level of aerobic fitness and strength/power. In the present study, participants with lower aerobic performance, had greater improvement in all endurance tests, while at the same time they had higher initial level of strength and power performance, and lower improvements in these parameters after training. According to this observation, the individual response of an MMA athlete to this type of concurrent aerobic and strength training may also depend on their initial level of endurance and strength, respectively. Thus, MMA coaches should take this into account during the preparation of MMA athletes, and should adjust the training regimens according to the baseline strength and aerobic fitness level of each athlete. An interesting finding of the present study was the positive correlations between changes of FFM and those of sprint performance. In the present study, sprinting performance was evaluated through the time needed from each athlete to complete either a 10 m sprint or the 2 m take down sprint. The correlations showed that a higher FFM lead to slower sprinting performance, which is in accordance with a previous study, reporting that increased musculature was a negative contributor to sprinting performance in trained individuals (Methenitis et al., 2016). In addition, participants of the STG increased their muscle strength, without any significant alterations of their FFM, indicating the present of neural adaptations. The importance of a maximal strength for sprinting performance has been shown in previous studies, as well as in the present study, where relative strength, e.g. 1RM·Body Mass-1 was correlated with sprint times (Chelly and Denis, 2001; Methenitis et al., 2016). The correlations observed in the present study, may also be a useful tool to MMA coaches for monitoring the training procedure, without performing all the tests. A limitation of the present study, is that RTG training did not include exercises that are close or related with those of the test battery in contrast with the STG. Thus, the test battery used in the present study may have underestimated the effects of RTG training. However, the selection of the evaluations of the present study as well as the training regimens of the STG, were based on previous reports and recommendations (James et al., 2014; 2016; 2017a; 2017b; Kendall and Fukuda, 2011; Tack, 2013). |