Biddle S.J., Batterham A.M. (2015) High-intensity interval exercise training for public health: a big HIT or shall we HIT it on the head?. International Journal of Behavioral Nutrition and Physical Activity 12, 95. |
Borg, G. (1998) Borg's perceived exertion and pain scales. Champaign:
Human Kinetics Books. |
Boutron I., Altman D.G., Moher D., Schulz K.F., Ravaud P., Group C.N. (2017) CONSORT Statement for Randomized Trials of Nonpharmacologic Treatments: A 2017 Update and a CONSORT Extension for Nonpharmacologic Trial Abstracts. Annals of Internal Medicine 167, 40-47. |
Buchheit M., Laursen P.B. (2013) High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis. Sports Medicine 43, 313-338. |
Ciolac E.G., Guimaraes G.V., VM D.A., Bortolotto L.A., Doria E.L., Bocchi E.A. (2009) Acute effects of continuous and interval aerobic exercise on 24-h ambulatory blood pressure in long-term treated hypertensive patients. International Journal of Cardiology 133, 381-387. |
Currie K.D., Dubberley J.B., McKelvie R.S., MacDonald M.J. (2013) Low-volume, high-intensity interval training in patients with CAD. Medicine & Science in Sports & Exercise 45, 1436-1442. |
Davies M.J., Benson A.P., Cannon D.T., Marwood S., Kemp G.J., Rossiter H.B., Ferguson C. (2017) Dissociating external power from intramuscular exercise intensity during intermittent bilateral knee-extension in humans. The Journal of Physiology 595, 6673-6686. |
Egan B., Carson B.P., Garcia-Roves P.M., Chibalin A.V., Sarsfield F.M., Barron N., McCaffrey N., Moyna N.M., Zierath J.R., O'Gorman D.J. (2010) Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor coactivator-1 mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. The Journal of Physiology 588, 1779-1790. |
Ekkekakis P. (2003) Pleasure and displeasure from the body: Perspectives from exercise. Cognition and Emotion 17, 213-239. |
Ekkekakis P., Parfitt G., Petruzzello S.J. (2011) The pleasure and displeasure people feel when they exercise at different intensities: decennial update and progress towards a tripartite rationale for exercise intensity prescription. Sports Medicine 41, 641-671. |
Farias-Junior L.F., Browne R.A.V., Freire Y.A., Oliveira-Dantas F.F., Lemos T., Galvao-Coelho N.L., Hardcastle S.J., Okano A.H., Aoki M.S., Costa E.C. (2018) Psychological responses, muscle damage, inflammation, and delayed onset muscle soreness to high-intensity interval and moderate-intensity continuous exercise in overweight men. Physiology and Behavior 199, 200-209. |
Fiorenza M., Gunnarsson T.P., Hostrup M., Iaia F.M., Schena F., Pilegaard H., Bangsbo J. (2018) Metabolic stress-dependent regulation of the mitochondrial biogenic molecular response to high-intensity exercise in human skeletal muscle. The Journal of Physiology 596, 2823-2840. |
Frazao D.T., de Farias L.F., Dantas T.C., Krinski K., Elsangedy H.M., Prestes J., Hardcastle S.J., Costa E.C. (2016) Feeling of Pleasure to High-Intensity Interval Exercise Is Dependent of the Number of Work Bouts and Physical Activity Status. PLoS One 11, e0152752. |
Gaesser G.A., Poole D.C. (1996) The slow component of oxygen uptake kinetics in humans. Exercise and Sport Sciences Reviews 24, 35-71. |
Garber C.E., Blissmer B., Deschenes M.R., Franklin B.A., Lamonte M.J., Lee I.M., Nieman D.C., Swain D.P. (2011) American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Medicine & Science in Sports & Exercise 43, 1334-1359. |
Gibala M.J., Gillen J.B., Percival M.E. (2014) Physiological and health-related adaptations to low-volume interval training: influences of nutrition and sex. Sports Medicine 44, S127-137. |
Gibala M.J., Little J.P., Macdonald M.J., Hawley J.A. (2012) Physiological adaptations to low-volume, high-intensity interval training in health and disease. The Journal of Physiology 590, 1077-1084. |
Gillen J.B., Percival M.E., Ludzki A., Tarnopolsky M.A., Gibala M.J. (2013) Interval training in the fed or fasted state improves body composition and muscle oxidative capacity in overweight women. Obesity (Silver Spring) 21, 2249-2255. |
Hardcastle S.J., Ray H., Beale L., Hagger M.S. (2014) Why sprint interval training is inappropriate for a largely sedentary population. Frontiers in Psychology 5, 1505. |
Hardy C.J., Rejeski W.J. (1989) Not what, but how one feels: The measurement of affect during exercise. Journal of Sport and Exercise Psychology 11, 304-317. |
Hood M.S., Little J.P., Tarnopolsky M.A., Myslik F., Gibala M.J. (2011) Low-volume interval training improves muscle oxidative capacity in sedentary adults. Medicine & Science in Sports & Exercise 43, 1849-1856. |
Hopkins W.G., Marshall S.W., Batterham A.M., Hanin J. (2009) Progressive statistics for studies in sports medicine and exercise science. Medicine & Science in Sports & Exercise 41, 3-13. |
Jung M.E., Bourne J.E., Little J.P. (2014) Where does HIT fit? An examination of the affective response to high-intensity intervals in comparison to continuous moderate- and continuous vigorous-intensity exercise in the exercise intensity-affect continuum. PLoS One 9, e114541. |
Kilpatrick M.W., Greeley S.J., Collins L.H. (2015) The Impact of Continuous and Interval Cycle Exercise on Affect and Enjoyment. Research Quarterly of Exercise and Sport 86, 244-251. |
Little J.P., Gillen J.B., Percival M.E., Safdar A., Tarnopolsky M.A., Punthakee Z., Jung M.E., Gibala M.J. (2011) Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. Journal of Applied Physiology (1985) 111, 1554-1560. |
Little J.P., Safdar A., Wilkin G.P., Tarnopolsky M.A., Gibala M.J. (2010) A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. The Journal of Physiology 588, 1011-1022. |
MacInnis M.J., Gibala M.J. (2017) Physiological adaptations to interval training and the role of exercise intensity. The Journal of Physiology 595, 2915-2930. |
Martinez N., Kilpatrick M.W., Salomon K., Jung M.E., Little J.P. (2015) Affective and Enjoyment Responses to High-Intensity Interval Training in Overweight-to-Obese and Insufficiently Active Adults. Journal of Sport &Exercise Psychology 37, 138-149. |
Midgley A.W., Carroll S., Marchant D., McNaughton L.R., Siegler J. (2009) Evaluation of true maximal oxygen uptake based on a novel set of standardized criteria. Applied Physiology, Nutrition, and Metabolism 34, 115-123. |
Midgley A.W., McNaughton L.R., Carroll S. (2007) Reproducibility of time at or near VO2max during intermittent treadmill running. International Journal of Sports Medicine 28, 40-47. |
Oliveira B.R., Slama F.A., Deslandes A.C., Furtado E.S., Santos T.M. (2013) Continuous and high-intensity interval training: which promotes higher pleasure?. PLoS One 8, e79965. |
Olney N., Wertz T., LaPorta Z., Mora A., Serbas J., Astorino T.A. (2018) Comparison of Acute Physiological and Psychological Responses Between Moderate Intensity Continuous Exercise and three Regimes of High Intensity Training. Journal of Strength and Conditioning Research 32, 2130-2138. |
Peronnet F., Aguilaniu B. (2006) Lactic acid buffering, nonmetabolic CO2 and exercise hyperventilation: a critical reappraisal. Respiratory Physiology & Neurobiology 150, 4-18. |
Ramalho Oliveira B.R., Viana B.F., Pires F.O., Oliveira M., Santos T.M. (2015) Prediction of Affective Responses in Aerobic Exercise Sessions. CNS & Neurological Disorders - Drug Targets 14, 1214-1218. |
Robertson R.J., Noble B.J. (1997) Perception of physical exertion: methods, mediators, and applications. Exercise and Sport Science Reviews 25, 407-452. |
Stork M.J., Banfield L.E., Gibala M.J., Martin Ginis K.A. (2017) A scoping review of the psychological responses to interval exercise: is interval exercise a viable alternative to traditional exercise?. Health Psychology Review 11, 324-344. |
Thum J.S., Parsons G., Whittle T., Astorino T.A. (2017) High-Intensity Interval Training Elicits Higher Enjoyment than Moderate Intensity Continuous Exercise. PLoS One 12, e0166299. |
Tschakert G., Hofmann P. (2013) High-intensity intermittent exercise: methodological and physiological aspects. International Journal of Sports Physiology and Performance 8, 600-610. |
Tschakert G., Kroepfl J., Mueller A., Moser O., Groeschl W., Hofmann P. (2015) How to regulate the acute physiological response to "aerobic" high-intensity interval exercise. Journal of Sports Science and Medicine 14, 29-36. |
Tucker W.J., Sawyer B.J., Jarrett C.L., Bhammar D.M., Gaesser G.A. (2015) Physiological Responses to High-Intensity Interval Exercise Differing in Interval Duration. Journal of Strength and Conditioning Research 29, 3326-3335. |
Vigen R., Ayers C., Willis B., DeFina L., Berry J.D. (2012) Association of cardiorespiratory fitness with total, cardiovascular, and noncardiovascular mortality across 3 decades of follow-up in men and women. Circulation: Cardiovascular Quality and Outcomes 5, 358-364. |
Weston K.S., Wisloff U., Coombes J.S. (2014) High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. British Journal of Sports Medicine 48, 1227-1234. |
|