According to the data presented here, BHT exercise can induce a high neuromuscular activity of the hip extensor muscles, especially the gluteus maximus, in comparison with the more traditional exercises. In addition, variations in the positioning of the feet during the execution of the BHT may present different levels of excitation of the muscles associated with the joints of the knee and hips. Beyond this, BHT causes a significant acute transfer for high-speed activities and horizontal displacement. On the other hand, there is still controversy about the effects of chronic training of BHT on long-term sports performance. It is not surprising that BHT has provoked greater EMG activity in the gluteus maximus muscle compared to the other exercises (Andersen et al., 2018; Contreras et al., 2015; Williams et al., 2018). Worrell et al. (2001) showed that when testing the maximum isometric torque of hip extension in a dynamometer, the gluteus maximus EMG activity was higher with the hip at 0° extension (exactly the end of the concentric phase of the BHT). In addition, knee flexion (about 90° angle) during the hip-raising phase induces a hamstrings insufficiency (lower force production), requiring a greater effort of the gluteus maximus muscle to generate sufficient torque for hip extension (Know and Lee, 2013). According to Collazo Garcia et al. (2018), lowering the flexion angle of the knees by placing the feet forward would increase the neuromuscular demands of the hamstrings without changing gluteus maximus excitation. Regardless of, it seems that the shorter the muscle length (as the top concentric phase of BHT), the greater the potential levels of EMG activity of the gluteus maximus (Robertson et al., 2008). This fact can be explained by the anatomical nature of the gluteus maximus muscle architecture, associated with the angle of the position in which the volunteers remain for the maximum voluntary isometric contraction test used for normalization of the EMG signal. Thus, the greater the levels of hip extension, the closer the Z-lines of the sarcomeres would be, increasing the levels of force production, and reaching the highest levels of EMG measured along the movement tested. In addition, the concept of the specificity principle applies directly in this case, whose association between the EMG test normalization test and the BHT exercise amplitude reaches its closest values. Collazo Garcia et al. (2018) also demonstrated that the greater the distance between the feet during BHT, the greater the activity of the gluteus maximus muscle, suggesting that the production of force tending to the frontal plane causes a greater excitation of this muscle. Similarly, it was evidenced that the EMG activity of the biceps femoris muscle was significantly higher in the BHT compared to squatting (Contreras et al., 2015). A number of studies have shown that squatting and its variations exhibits lower hamstring demands compared to measurements made on the quadriceps femoris (Escamilla et al., 2001; McCaw et al., 1999; Marchetti et al., 2018). It is possible to relate the bi-articular nature of the hamstring muscles to this lower EMG activity (Contreras et al., 2015). While squats involve the extension of the hip during concentric phase, for which the hamstrings are a primary motor, it also involves the extension of the knee, to which the hamstrings are antagonists. Thus, the hamstring EMG activity is lower when the combined hip and knee extension is performed in comparison to the isolated hip extension (Yamashita, 1988). Such a situation occurs because the hamstrings change length in the BHT compared to performing simultaneous hip and knee extension that occurs in the various types of squats. This same effect (lower hamstring activity compared to other recruited muscles) is evidenced for other multi-joint exercises, such as lunges and leg press (Escamilla et al., 1998; Machado et al., 2017; Marchetti et al., 2018). According to Know and Lee (2013), the greater the angle of knee flexion, the lower the myoelectric activity of the hamstring would be. This action occurs during all multi-articular exercises, thus explaining the different and lower levels of hamstring excitation found in these types of exercises. On the other hand, in the BHT exercise, there is virtually no knee extension movement, keeping the muscle tension levels of the hamstring associated only with hip extension. Collazo Garcia et al. (2018) present a strategy to further increase the levels of neuromuscular excitation of the hamstring muscles (biceps femoris and semitendinosus), by positioning the feet further, enabling a greater level of stretching and increased muscle tension. The fact that the traditional deadlift presented greater activation of the biceps femoris than BHT was due to the mechanical difference between the two (Andersen et al., 2018). At the beginning of the concentric phase of the traditional deadlift, the lever arm of the hip joint, in relation to the load, is longer, creating greater stress in the extensor muscles of the hip (Andersen et al., 2018). Thus, as the deadlift exercise reaches greater ranges of motion compared to BHT, there is a greater demand for work from these muscle groups. For this, the greater the distance traveled (greater work), the greater the myoelectric activity measured. On the other hand, in the BHT, the mechanical demand for the gluteus maximus and hamstring muscles is higher at the end of the movement than at the beginning (Contreras et al., 2015; 2017). Another possible explanation could be the initial muscle length, wherein the traditional deadlift, the knees are more extended at the beginning of the movement compared to the BHT, increasing the muscles’ ability to generate force. Know and Lee (2013) demonstrated that the excitation of the hamstrings is greater in 0° of knee flexion, decreasing progressively until 110°. If you take into account that the knee flexion angles in the deadlift are smaller than in the BHT, it is easy to understand the higher EMG values found in the deadlift. According to the authors, two factors explain this: first, when the connective tissue is previously extended by the greater muscular stretching, this causes an increase of the passive tension, increasing the active tension for the muscular contraction; and second, the tension-length relationship of the sarcomeres, creates an ideal interaction for the generation of force by the actin and myosin bridges (Know and Lee, 2013). In contrast, the vastus lateralis muscle exhibited similar EMG activity between the squat and BHT (Contreras et al., 2015). However, we could hypothesize that the BHT exercise would present less myoelectric activity of the vastus lateralis muscle in comparison to the squatting. Squatting is well known for causing high levels of quadriceps femoris EMG activity compared to other lower limb exercises (Schwanbeck et al., 2009; Wilk et al., 1996). Contreras et al. (2015) justify their findings through a concern with the statistical methods used, indicating a probable risk of type I error during the post hoc test used by using the Holm-Bonferroni correction instead of the more conservative Bonferroni correction. However, it is also possible that the different muscles that form the quadriceps femoris may present different levels of EMG activity during BHT (Collazo Garcia et al., 2018). Nevertheless, the different loads used by the studies included in this study make it difficult to compare the variations of BHT and other studies (Collazo Garcia et al., 2018; Contreras et al., 2015; 2017). Even so, the heavier loads used in the BHT, compared to squat types, could also have led to the significant differences found in the vastus lateralis muscle, whose function would be to stabilize (isometrically) the knee during the execution of BHT. Further, Collazo Garcia et al. (2018) presented that the muscle excitation sequence during the BHT exercise is the gluteus maximus, gluteus medius, biceps femoris, semitendinosus, vastus lateralis, vastus medialis, and rectus femoris. Therefore, according to them, the hamstrings: quadriceps coactivation ratio increases when variations are performed (Collazo Garcia et al., 2018). Andersen et al. (2018) demonstrate similar EMG of erector spinae muscles between BHT and traditional and hex bar deadlift exercises. The results obtained here were expected since several other studies have already presented similar results analyzing other exercises (Camara et al., 2016; Gullett et al., 2009; Yavuz et al., 2015). The maximum velocity required in activities such as sprinting seems to be dependent on horizontal and vertical force production (Brughelli and Cronin, 2011; Kuitunen et al., 2002; Loturco et al., 2018; Nummela et al., 2007; Williams et al., 2018). Williams et al. (2018) demonstrated high neuromuscular activity of the gluteus maximus muscle, along with a positive correlation between peak sprint speed and anteroposterior horizontal force with peak ground reaction force only in the BHT compared to two types of the barbell squat. Testing the effects of post-activation potentiation of different training loads on the BHT, Dello Iacono et al. (2018) and Dello Iacono and Seitz (2018) demonstrated improved speed in both professional handball and soccer athletes. Additionally, Loturco et al. (2018) indicate that the post-activation potentiation of the BHT is more associated with the acceleration phase (0 to 10 m) than with maximum velocity phases (distances greater than 40 m). These results suggest that the high recruitment of the hip extensor muscles can potentiate the acceleration for horizontal displacements in short duration tests such as sprinting. In this sense, Loturco et al. (2018) indicate that the near-perfect associations found between different loads of BHT and all velocities evaluated in the acceleration phase (up to 60 m) represent an important input for the development of optimal sprint training interventions. According to the review done here, it is clear that the results of the chronic studies are divided as to the efficiency of this exercise beyond the acute phase, demonstrating both improvement (Contreras et al., 2017; Zweifel et al., 2017) as “no effect “(Bishop et al., 2017; Lin et al., 2017) over 6 and 8 weeks of training. The pilot study by Zweifel et al. (2017) demonstrated greater effect sizes for BHT after 6 weeks of training with varying loads (30-100% RM). Corroborating, Contreras et al. (2017) showed better results in the 10 and 20 m tests with BHT training compared to the front squat. In contrast, Lin et al. (2017) and Bishop et al. (2017) failed to transfer strength gains into more practical results. This variability of results may be associated with the different training loads used in each study. Zweifel et al. (2017) and Contreras et al. (2017) used load variation over the training time (30-100% RM), while Lin et al. (2017) and Bishop et al. (2017) used higher loads (6-12RMs). It is known that sub-maximal loads demonstrate greater transference to sports activities that depend on higher power output. Thus, lighter and submaximal loads may be ideal for this outcome. In addition, the included chronic studies used samples of athletes composed of different sports specialties, and this may also have directly affected the results of the study, since the sprint technique may have varied among the different samples. Finally, future studies should investigate whether the high levels of muscle activation of the hip extensor muscles seen in the BHT, transfer into results of muscle hypertrophy, and the optimal relationship of the BHT training load and its transfer to sprint performance. Outcomes such as these are still cause for much debate. |