The aim of this study was to assess the prevalence of acute mountain biking injuries in elite and amateur riders and to compare both groups in terms of injury related outcomes. As the survey of the present study was conducted during the Swiss Epic Mountain Bike Event, which mainly attracts cross-country riders, the findings of the present study may uniquely be transferred to a cross-country mountain bike population. Further, a selection bias may have occurred due to this specific cohort. A majority of participants (71.0%) reported at least one event of a mountain biking related injury. Existing literature reported contradictory injury prevalence although the same definition for injury event was applied (Chow et al., 1993). Also Gaulrapp et al. (2001) mentioned a non-comparable prevalence value. This difference may be explained by the use of a different injury definition, namely, ‘an event preventing the athlete from at least one day of mountain biking’ (Gaulrapp et al., 2001). Further, the latter two studies were conducted in different decades compared to the present study, questioning their comparability due to technical development and awareness of injury risk in this developing sport. This contradiction is supported by previous studies on the development of injury events seeking treatment in an emergency department or trauma center over a comparable period and point in time (Kim et al., 2006; Nelson and McKenzie, 2011). The finding of the significant group difference in mean hours of training per week and number of races per year was hypothesized. All of the elite respondents participated in the five-stage racing format highlighting their need for specific training. However, this survey missed to assess whether the races were performed alone or as a team. Further, elites might perform several mountain biking styles, where specific mountain bikes are used (Becker et al., 2013) and therefore technical and performance skills need to be adapted accordingly (Burr et al., 2012; Impellizzeri et al., 2005). Both groups train and focus on race preparation according to the correlations found, indicating the professionalism in this sport to get prepared for a racing event. Concerning the number of injuries per 1000 hours of exposure time, the findings of the present study are comparable with a previous study by Himmelreich et al. (2007). The observed elites and amateurs in the present study used an equal amount of protective gear items. The amount of protective gear items was not predictive against injuries. Elites tend to wear more protective gear items with increasing years of practicing mountain biking, whereas this correlation was not found in amateurs. They might take more risk during races with increasing experience and try to avoid injuries by wearing protective gear items. The higher percentage of required medical treatment of elites for all kinds of injuries may be influenced by the availability of medical staff within a professional team and/ or professional racing event. A recent study publishing preliminary data reported that wearing a helmet correlated with an increased injury rate in non-professional cyclists (Bogusiak et al., 2018). Further, another study mentioned that the injury risk of bicyclists for a serious event was not impaired by wearing a helmet (Rivara et al., 2015). An explanation for those findings could be that injury risk includes all injuries regardless of the affected body region. Wearing a helmet might not prevent a rider from upper or lower extremity injuries. All riders in the present study reported the wearing of helmets. Concussions occurred in amateurs, whereas they did not in elites, suggesting a higher impact of falls in amateurs compared to elites. The finding that amateurs suffered bone fractures of the shoulder region may be explained by the falling mechanism over the handle bar. In the present study, both groups mainly suffered from bone fractures of the lower extremity. In the literature, bone fractures of the upper extremity (Bogusiak et al., 2018; Jeys et al., 2001; Lea et al., 2016; Nelson and McKenzie, 2011) and/or tibia (Kim et al., 2006) were reported as the most commonly fractured body site in non-competitive cyclists and mountain bikers. In contrast with the present study, McGrath and Yehl (2012) describing the same rider population and bike race event as presented in the present study, reported skin and soft tissue injuries as the most common injury event. An explanation for this discrepancy could be that they focused on a point prevalence of injuries occurring during the racing event rather than assessing the total suffered injuries since performing mountain biking. Furthermore, in the present survey, recall bias may have led to underreporting of mild injuries (as people tend to remember severe injuries better than mild injuries). Future studies should consider the most appropriate injury definition concerning the study’s purpose and requested comparability within the research field. The definition of injury of the present study was chosen in accordance with Chow et al. (1993) to ensure the inclusion of a wide range of events. To enhance the homogeneity of injury severity grading, upcoming studies are advised to evaluate the application of the injury severity score (ISS). In the present study the application of the ISS was not considered since the questionnaire used was performed as a self-evaluating tool without any assistance of a medical professional, who would had been able to rate the ISS. An improvement for future studies might be in-depth interviews as survey technique. Further, the authors recommend the use of a validated questionnaire to increase the validity of the reported outcomes. As possible limitation of the present study could be mentioned that athletes might have experienced problems to rate their performance level as no official classification was applied. This study did not focus on the kind of training. It might had been interesting to detect differences in training content between elite and amateur riders and to evaluate training content as a predictive factor for the occurrence of a severe injury. As a previous study suggested, isometric strength training might be required for the sufficient control of the handlebar (Impellizzeri and Marcora, 2007). |