The purpose of this study was to examine acute effects of two types of stretching (SS and DS), isolated and in combination with specific basketball warm-up, on the neuromuscular excitability and vertical jump height in young basketball players. The main findings were that SS significantly decreased spinal excitability and vertical jump height, but after SSWU was applied, vertical jump height increased, while Hmax/Mmax ratio continued decreasing. Acute effects of DS, alone and in combination with SSWU were not significant. As we hypothesized, VJ height was reduced immediately after SS, which had been already shown by several studies (Cornwell et al., 2002; Paradisis et al., 2014), although we used shorter stretching (30sec per muscle group), which was suggested not to have negative effects on power (Reid et al., 2018; Behm et al., 2016; Samson et al., 2012). Mechanically, the SS may induced prolonged and more prominent reduction in musculotendinous stiffness, which inhibited the production of force in the contractile component of the muscle (Taylor t al., 2009). The ability of the MTU to store and transfer elastic energy after SS could also decreased (Cornwell et al., 2002). Moreover, the SS changes viscoelastic properties of human tendon structures in vivo by decreasing the viscosity of tendon structures, as well as by increasing the elasticity (Kubo et al., 2001). More compliant muscle and tendon could be responsible for less efficient force transfer from the muscle to tendon, thereby resulting in a lower rate of force production. Studies that did not find any negative effects of SS on VJ height, had some methodological differences with our experimental design, such as using shorter SS (3x5sec) (Holt et al., 2008), implementation of 10 submaximal vertical jumps before the SS protocol (Clark et al. 2014), non-homogenous (eight men and three women) sample of subjects that were recreational athletes (Stafilidis and Tilp, 2015), or different static stretching exercises and different subjects’ characteristics (Reid et al., 2018). Although it was expected that DS will increase vertical jump height, there was no significant change in our study, which is in accordance with some previous studies (Christensen and Nordstrom, 2008; Jaggers et al., 2008). It is important to say that VJ involves not only power and velocity but also the coordination and sequencing of the power and velocity of each limb segment (Turki et al, 2011). If segmental coordination was altered by dynamic stretch exercises, there may not be an appropriate summation of forces leading to no improvement in VJ height. Literature also indicates (Behm and Chaouachi, 2011) that shorter durations of dynamic stretching (less than 10 minutes, six in our study) do not affect performance. Certain neural factors may affect changes in muscle’s force production after SS. Decreased motor unit activation, firing frequency, and/or altered reflex sensitivity are only some of them (Avela et al., 1999; Fowles et al.,2000). Fowles et al. (2000) even claimed that 60% of the stretching-induced decreases in force production of the triceps surae muscle (up to 15 min post-stretching) were due to neural factors, while Behm and Chaouachi (2011) suggested that at least part of the decreases in maximal force production of the leg extensors, after stretching, was due to decreases in muscle activation. We observed effects on spinal excitability, more precisely, on Hmax/Mmax ratio, which can be interpreted as the proportion of the entire MN pool capable of being recruited (Misiaszek, 2003). We found that, acutely, SS significantly reduced Hmax/Mmax ratio, as already previously reported (Guissard and Duchateau, 2006; Behm et al., 2013). We can assume that impairment after SS is due to inhibition of H reflex. It is known that the SS increases the flexibility and the length of the muscle, while at the same time increases the presynaptic inhibition from the proprioceptive organs (Clark et al.,2014), or reduces synaptic transmission of Ia afferent fibers to α motor neuron, causing the inhibition of the H reflex. The reduction in the excitation of motor neurons during muscle stretching is caused by mechanisms located at both presynaptic and postsynaptic sites (Guissard and Duchateau, 2006). Reduction in the Hmax/Mmax ratio after stretching was also found in the study of Avela et al. (1999). They concluded that there was only a reduction in excitability of α motor neuron. The same authors reported that the magnitude of the H reflex, in general, is affected by the ongoing net excitatory mechanisms onto the α-motor neurons. The most likely explanation for the reduction of H reflex, is a reduction in the excitatory drive from the Ia afferents onto the α-motor neurons, which probably causes decreased resting discharge of the muscle spindles because of increased muscle compliance (Avela et al. 1999). Another factor that could affect transmission in the H-reflex arc was post-activation depression (PAD). Any prior activity can be expected to lead to reduction in the available neurotransmitter stores in the Ia afferent terminals. PAD could be particularly important factor during movements that would change the length of the target muscle. Changing the length of the muscle, by static stretching in our case, could activated the muscle spindle stretch receptors, that could result in activation of the Ia afferents, which further could be led to suppression of the H-reflex due to PAD (Kubo et al.,2001). This is also the main reason why vertical jump testing was conducted after H reflex testing in our study. Acutely, DS produce no significant change in Hmax/Mmax ratio, but upward trend is evident. Specific basketball warm-up is regular part of basketball pre-game activities. Use of SSWU after SS in our study reduced negative effects of stretching on the vertical jump height, which was already confirmed in some previous studies (Taylor et al., 2009; Youngand Behm, 2003) but Hmax/Mmax ratio continued to decrease. Time elapsed between the end of the stretching and the termination of the H-reflex measurement is a crucial element for looking at the variation of spinal excitability (Budini and Tilp, 2016). This decrease of Hmax/Mmax ratio and, in the same time, increase of vertical jump height could be a possible indication that some other neural factors got involved beside spinal excitability, which remain largely unexplored (Budini and Tilp, 2016; Budini et al., 2017) Also, stretching training programs seem to induce long-term adaptations of spinal excitability, but it is not correlated or at least has a different time course compared to the mechanical adaptations (Budini and Tilp, 2016). Probably, SSWU caused increase in muscle temperature, nerve conduction velocity, and reduction in muscle viscosity (Bishop, 2003). It is known that decreased force and rate of force development related to stretching could be returned after 10 minutes if followed by dynamic movements that mimic the tasks that follow (Rosenbaum and Hennig, 1995. This additional activity both similar movements and neuromuscular/ energetic demands as basketball game (and vertical jump testing in our case) (Young and Behm, 2003), which could lead to post-activation potentiation (PAP; Behm and Chaouachi, 2011). In addition, SSWU could decrease muscle stiffness by breaking the stable bonds between actin and myosin filaments (Taylor et al., 2009). Another explanation why height of vertical jump came back to same values is that effects of SS disappeared because of elapsed time between stretching and testing after SSWU (approximately 18 minutes). In Behm et al. review (2016), authors reported that in studies that conducted tests more than 10 minutes after stretching, performance changes were typically statistically trivial unless extreme stretch protocols were used. Even effect of significantly reduced stiffness in the MTU after static stretching that lasts longer (5x1min) disappears within the 10min (Mizuno et al., 2013). Also, trained athletes may be resistant to stretching-induced force deficit (Egan et al., 2006). Usual practice that our subjects had in their clubs may provide the chronic training adaptations necessary to avoid any adverse long-term effects of stretching on performance. Combination of DS and SBWU did not lead to increasing VJ height nor Hmax/Mmax ratio. These two activities are both dynamic and maybe the combination of them fatigued subjects. The only study that had similar goals and experimental design to ours, was conducted by Clark et al., (2014). Authors wanted to determine the isolate acute effects of SS and DS on H reflex, motor neuron excitability and presynaptic inhibition of the m. soleus. They had 21 subjects (13 female, 8 male students; 19.8 years), who participated in two experimental sessions. In two separate days, H reflex and vertical jump power were tested, before and after either SS (3x30sec, 10sec pause) or DS (3x20m, 30sec pause) protocol, conducted on soleus muscle. The results showed that presynaptic inhibition remained the same after SS, but it was significantly reduced after DS. However, peak power significantly increased after SS, while after DS there was no significant increase. The difference in these findings and in our study lies in the few limitations that are specified by the authors themselves. First of all, Clark etal. (2014) included participants who were not screened for previous athletic experience. Excitability of the spinal motor neuron pool is known to undergo adaptive changes in response to various factors including long-term physical training (Koceja et al., 1993). In power-trained individuals, H-reflex is lower than in non-trained subjects, probably because of relatively high fast-twitch fiber percentage and high activation thresholds of such motor units (Ross et al., 2001). Also, in Clark et al. (2014) study, subjects were men and women, while in ours it was only men (more homogeneous sample). Further, the authors have focused solely upon the soleus muscle, predominantly comprised of slow twitch fibers while we measured medial gastrocnemius muscle, which has higher proportion of fast twitch fibers. In future studies, some methodology aspects during spinal excitability measurements should be more precisely determined. Stretch and lengthening of the muscle should be limited to a single joint and the movement should be controlled in terms of displacement speed and amplitude. Degree of the applied stretch should be clearly stated and concomitant muscle contraction of either agonists or antagonists should be controlled, because it could reduce the inhibition of H-reflex (this could also be the limitations of present study). Also, additional neural assessment measurements should be provided, enabling detailed analysis of the underlying mechanisms that mediate neural responses to stretching. |