Ando S., Hatamoto Y., Sudo M., Kiyonaga A., Tanaka H., Higaki Y. (2013) The Effects of Exercise Under Hypoxia on Cognitive Function. PLoS One 8. |
Ando S., Kokubu M., Yamada Y., Kimura M. (2011) Does cerebral oxygenation affect cognitive function during exercise?. European Journal of Applied Physiology 111, 1973-1982. |
Arnsten A.F.T. (2009) Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience 10, 410-422. |
Bartholomew C.J., Jensen W., Petros T.V., Ferraro F.R., Fire K.M., Biberdorf D., Fraley E., Schalk J., Blumkin D. (1999) The effect of moderate levels of simulated altitude on sustained cognitive performance. International Journal of Aviation Psychology 9, 351-3599. |
Bonnon M., Noel-Jorand M.C., Therme P. (1999) Criteria for psychological adaptation to high-altitude hypoxia. Perceptual and Motor Skills 89, 3-18. |
Borg G.A.V. (1982) Psychophysical Bases of Perceived Exertion. Medicine and Science in Sports and Exercise 14, 377-381. |
Bowtell J.L., Cooke K., Turner R., Mileva K.N., Sumners D.P. (2013) Acute physiological and performance responses to repeated sprints in varying degrees of hypoxia. Journal of Science and Medicine in Sport 17, 399-403. |
Brisswalter J., Arcelin R., Audiffren M., Delignieres D. (1997) Influence of physical exercise on simple reaction time: Effect of physical fitness. Perceptual and Motor Skills 85, 1019-1027. |
Brisswalter J., Collardeau M., Arcelin R. (2002) Effects of acute physical exercise characteristics on cognitive performance. Sports Medicine 32, 555-566. |
Brocherie F., Girard O., Faiss R., Millet G.P. (2015) High-intensity intermittent training in hypoxia: a double-blinded, placebo-controlled field study in youth football players. Journal of Strength and Conditioning Research 29, 226-37. |
Chang Y.K., Labban J.D., Gapin J.I., Etnier J.L. (2012) The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research 1453, 87-101. |
Chmura J., Nazar K., Kaciubauscilko H. (1994) Choice-Reaction Time during Graded-Exercise in Relation to Blood Lactate and Plasma-Catecholamine Thresholds. International Journal of Sports Medicine 15, 172-176. |
Corbetta M., Shulman G.L. (2002) Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience 3, 201-215. |
Driver J., Frackowiak R.S. (2001) Neurobiological measures of human selective attention. Neuropsychologia 39, 1257-1262. |
Dupuy O., Billaut F., Raymond F., Benraiss A., Theurot D., Bosquet L., Fraser S., Tremblay J. (2018) Effect of Acute Intermittent Exercise on Cognitive Flexibility: the Role of Exercise Intensity. Journal of Cognitive Enhancement 2, 146-156. |
Endo K., Matsukawa K., Liang N., Nakatsuka C., Tsuchimochi H., Okamura H., Hamaoka T. (2013) Dynamic exercise improves cognitive function in association with increased prefrontal oxygenation. Journal of Physiological Sciences 63, 287-298. |
Faiss R., Leger B., Vesin J.M., Fournier P.E., Eggel Y., Deriaz O., Millet G.P. (2013) Significant molecular and systemic adaptations after repeated sprint training in hypoxia. PLoS One 8, e56522. |
Fery Y.A., Ferry A., VomHofe A., Rieu M. (1997) Effect of physical exhaustion on cognitive functioning. Perceptual and Motor Skills 84, 291-298. |
Galvin H.M., Cooke K., Sumners D.P., Mileva K.N., Bowtell J.L. (2013) Repeated sprint training in normobaric hypoxia. British Journal of Sports Medicine 47, 74-79. |
Goods P.S.R., Dawson B., Landers G.J., Gore C.J., Peeling P. (2015) No Additional Benefit of Repeat-Sprint Training in Hypoxia than in Normoxia on Sea-Level Repeat-Sprint Ability. Journal of Sports Science and Medicine 14, 681-688. |
Kamijo K., Nishihira Y., Hatta A., Kaneda T., Wasaka T., Kida T., Kuroiwa K. (2004) Differential influences of exercise intensity on information processing in the central nervous system. European Journal of Applied Physiology 92, 305-311. |
Kasai N., Mizuno S., Ishimoto S., Sakamoto E., Maruta M., Goto K. (2015) Effect of training in hypoxia on repeated sprint performance in female athletes. Springerplus 4. |
Komiyama T., Sudo M., Higaki Y., Kiyonaga A., Tanaka H., Ando S. (2015) Does moderate hypoxia alter working memory and executive function during prolonged exercise?. Physiology & Behavior 139, 290-296. |
Kujach S., Byun K., Hyodo K., Suwabe K., Fukuie T., Laskowski R., Dan I., Soya H. (2018) A transferable high-intensity intermittent exercise improves executive performance in association with dorsolateral prefrontal activation in young adults. Neuroimage 169, 117-125. |
Lambourne K., Tomporowski P. (2010) The effect of exercise-induced arousal on cognitive task performance: A meta-regression analysis. Brain Research 1341, 12-24. |
Leon-Carrion J., Damas-Lopez J., Martin-Rodriguez J.F., Dominguez-Roldan J.M., Murillo-Cabezas F., Martin J.M.B.Y., Dominguez-Morales M.R. (2008) The hemodynamics of cognitive control: The level of concentration of oxygenated hemoglobin in the superior prefrontal cortex varies as a function of performance in a modified Stroop task. Behavioural Brain Research 193, 248-256. |
MacDonald L.A., Minahan C.L. (2016) Indices of cognitive function measured in rugby union players using a computer-based test battery. Journal of Sports Sciences 34, 1669-1674. |
McMorris T., Hale B.J., Barwood M., Costello J., Corbett J. (2017) Effect of acute hypoxia on cognition: A systematic review and meta-regression analysis. Neurosci Biobehav Rev 74, 225-232. |
Morrison J., McLellan C., Minahan C. (2015) A Clustered Repeated-Sprint Running Protocol for Team-Sport Athletes Performed in Normobaric Hypoxia. Journal of Sports Science and Medicine 14, 857-863. |
Okada E., Delpy D.T. (2003) Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal. Applied Optics 42, 2915-2922. |
Perrey S (2008) Non-invasive NIR spectroscopy of human brain function during exercise. Methods 45, 289-299. |
Posner M.I., Fan J. (2008) Attention as an organ system. Topics in Integrative Neuroscience , 31-61. |
Puype J., Van Proeyen K., Raymackers J.M., Deldicque L., Hespel P. (2013) Sprint Interval Training in Hypoxia Stimulates Glycolytic Enzyme Activity. Medicine & Science in Sports & Exercise 45, 2166-214. |
Seo Y., Burns K., Fennell C., Kim J.H., Gunstad J., Glickman E., McDaniel J. (2015) The Influence of Exercise on Cognitive Performance in Normobaric Hypoxia. High Altitude Medicine and Biology 16, 298-305. |
Smith K.J., Billaut F. (2010) Influence of cerebral and muscle oxygenation on repeated-sprint ability. European Journal of Applied Physiology 109, 989-99. |
Subudhi A.W., Miramon B.R., Granger M.E., Roach R.C. (2009) Frontal and motor cortex oxygenation during maximal exercise in normoxia and hypoxia. Journal of Applied Physiology 106, 1153-1158. |
Swanik C.B., Covassin T., Stearne D.J., Schatz P. (2007) The relationship between neurocognitive function and noncontact anterior cruciate ligament injuries. American Journal of Sports Medicine 35, 943-948. |
|