Ashenden M. J., Gore C. J., Martin D. T., Dobson G. P., Hahn A. G. (1999a) Effects of a 12-day “live high, train low” camp on reticulocyte production and haemoglobin mass in elite female road cyclists. European Journal of Applied Physiology and Occupational Physiology 80, 472-478. |
Ashenden M. J., Gore C. J., Dobson G. P., Hahn A. G. (1999b) “Live high, train low” does not change the total haemoglobin mass of male endurance athletes sleeping at a simulated altitude of 3000 m for 23 nights. European Journal of Applied Physiology and Occupational physiology 80, 479-484. |
Bonetti D. L., Hopkins W. G. (2009) Sea-level exercise performance following adaptation to hypoxia: a meta-analysis. Sports Medicine 39, 107-127. |
Brocherie F., Millet G. P., Hauser A., Steiner T., Rysman J., Wehrlin J. P., Girard O. (2015) Live high-train low and high” hypoxic training improves team-sport performance. Medicine & Science in Sports & Exercise 47, 2140-2149. |
Brugniaux J. V., Schmitt L., Robach P., Jeanvoine H., Zimmermann H., Nicolet G., Duvallet A., Fouillot J. P., Richalet J. P. (2006) Living high-training low: tolerance and acclimatization in elite endurance athletes. European Journal of Applied Physiology 96, 66-77. |
Clark S. A., Aughey R. J., Gore C. J., Hahn A. G., Townsend N. E., Kinsman T. A., Chow C. M., McKenna M. J., Hawley J. A. (2004) Effects of live high, train low hypoxic exposure on lactate metabolism in trained humans. Journal of Applied Physiology 96, 517-525. |
Chapman R. F., Stray-Gundersen J., Levine B. D. (1998) Individual variation in response to altitude training. Journal of Applied Physiology 85, 1448-1456. |
Christoulas K., Karamouzis M., Mandroukas K. (2011) “Living high - training low” vs. “living high - training high”: erythropoietic responses and performance of adolescent cross-country skiers. The Journal of Sports Medicine & Physical Fitness 51, 74-81. |
Dehnert C., Hütler M., Liu Y., Menold E., Netzer C., Schick R., Kubanek B., Lehmann M., Böning D., Steinacker J. M. (2002) Erythropoiesis and performance after two weeks of living high and training low in well trained triathletes. International Journal of Sports Medicine 23, 561-566. |
Debevec T., Pialoux V., Saugy J., Schmitt L., Cejuela R., Mury P., Ehrström S., Faiss R., Millet G. P. (2015) Prooxidant/Antioxidant Balance in Hypoxia: A Cross-Over Study on Normobaric vs. Hypobaric “Live High-Train Low”. PLoS One 10, e0137957-. |
Garvican L. A., Pottgiesser T., Martin D. T., Schumacher Y. O., Barras M., Gore C. J. (2011) The contribution of haemoglobin mass to increases in cycling performance induced by simulated LHTL. European Journal of Applied Physiology 111, 1089-1101. |
Gore C. J., Hahn A. G., Aughey R. J., Martin D. T., Ashenden M. J., Clark S. A., Garnham A. P., Roberts A. D., Slater G. J., McKennar M. J. (2001) Live high:train low increases muscle buffer capacity and submaximal cycling efficiency. Acta Physiologica Scandinavica 173, 275-286. |
Green H. J., Roy B., Grant S., Hughson R., Burnett M., Otto C., Pipe A., McKenzie D., Johnson M. (2000) Increases in submaximal cycling efficiency mediated by altitude acclimatization. Journal of Applied Physiology 89, 1189-1197. |
Hahn A. G., Gore C. J., Martin D. T., Ashenden M. J., Roberts A. D., Logan P. A. (2001) An evaluation of the concept of living at moderate altitude and training at sea level. Comparative Bio-chemistry and Physiology Part A: Molecular & Integrative Physiology 128, 777-789. |
Hauser A., Troesch S., Saugy J. J., Schmitt L., Cejuela-Anta R., Faiss R., Steiner T., Robinson N., Millet G. P., Wehrlin J. P. (2017) Individual hemoglobin mass response to normobaric and hypobaric “live high-train low”: a one-year crossover study. Journal of Applied Physiology 123, 387-393. |
Katayama K., Matsuo H., Ishida K., Mori S., Miyamura M. (2003) Intermittent hypoxia improves endurance performance and submaximal exercise efficiency. High Altitude Medicine & Biology 4, 291-304. |
Kawaguchi K., Hayashi Y., Sekikawa K., Tabusadani M., Inamizu T., Onari K., Bhambhani Y. (2006) Vastus lateralis oxygenation during prolonged cycling in healthy males. Applied Physiology, Nutrition, & Metabolism 31, 48-55. |
Levine B. D. (2002) Intermittent hypoxic training: fact and fancy. High Altitude Medicine & Biology 3, 177-193. |
Levine B. D., Stray-Gunderson J. (1997) “Living high-training low”: Effect of moderate-altitude exposure simulated with nitrogen tents. Journal of Applied Physiology 83, 102-112. |
Levine B. D., Stray-Gundersen J. (2006) Dose-response of altitude training: how much altitude is enough?. Advances Experimental Medicine & Biology 588, 233-247. |
Li H. T., Honbo N. Y., Karliner J. S. (1996) Chronic hypoxia increases β1-adrenergic receptor mRNA and density but not signaling in neonatal rat cardiac myocytes. Circulation 94, 3303-3310. |
Liu Y., Steinacker J. M., Dehnert C., Menold E., Baur S., Lormes W., Lehmann (1998) Effect of “living high-training low” on the cardiac functions at sea level. International Journal of Sports Medicine 19, 380-384. |
McArdle W. D., Katch F. I., Pechar G. S. (1973) Comparison of continuous and discontinuous treadmill and bicycle tests for VOmax. Medicine and Science in Sports 5, 156-160. |
Millet G. P., Faiss R., Brocherie F., Girard O. (2013) Hypoxic training and team sports: a challenge to traditional methods?. British Journal of Sports Medicine 47, i6-i7. |
Park H. Y., Nam S. S. (2017) Application of “living high-training low” enhances cardiac function and skeletal muscle oxygenation during submaximal exercises in athletes. Journal of Exercise Nutrition & Biochemistry 21, 13-20. |
Park H. Y., Kim S., Nam S. S. (2017) Four-week “living high training low” program enhances 3000 m and 5000 m time trials by improving energy metabolism during submaximal exercise in athletes. Journal of Exercise Nutrition & Biochemistry 21, 1-6. |
Park H. Y., Shin C., Lim K. (2018) Intermittent hypoxic training for 6 weeks in 3000 m hypobaric hypoxia conditions enhances exercise economy and aerobic exercise performance in moderately trained swimmers. Biology of Sport 35, 49-56. |
Reeves J. T., Mazzeo R. S., Wolfel E. E., Young A. J. (1992) Increased arterial pressure after acclimatization to 4300 m: possible role of norepinephrine. International Journal of Sports Medicine 13, S18-S21. |
Robach P., Schmitt L., Brugniaux J. V., Roels B., Millet G., Hellard P., Nicolet G., Duvallet A., Fouillot J. P., Moutereau S., Lasne F., Pialoux V., Olsen N. V., Richalet J. P. (2006) Living high–training low: effect on erythropoiesis and aerobic performance in highly-trained swimmers. European Journal of Applied Physiology 96, 423-433. |
Roberts A. C., Butterfield G. E., Cymerman A., Reeves J. T., Wolfel E. E., Brooks G. A. (1996) Acclimatization to 4,300 m altitude decreases reliance on fat as a substrate. Journal of Applied Physiology 81, 1762-1771. |
Robertson E. Y., Saunders P. U., Pyne D. B., Aughey R. J., Anson J. M., Gore C. J. (2010) Reproducibility of performance changes to simulated live high/train low altitude. Medicine & Science in Sports & Exercise 42, 394-401. |
Rusko H. K., Tikkanen H., Paavolainen L., Hämäläinen I., Kalliokoski K., Puranen A. (1999) Effect of living in hypoxia and training in normoxia on sea level VOmax and red cell mass. Medicine & Science in Sports & Exercise 31, S86. |
Rusko H., Tikkanen H., Peltonen J. (2004) Altitude and endurance training. Journal of Sports Sciences 22, 928-945. |
Saugy J. J., Schmitt L., Cejuela R., Faiss R., Hauser A., Wehrlin J. P., Rudaz B., Delessert A., Robinson N., Millet G. P. (2015) Correction: Comparison of “Live High-Train Low” in Normobaric versus Hypobaric Hypoxia. PLoS One 10, e0133091. |
Saunders P. U., Telford R. D., Pyne D. B., Cunningham R. B., Gore C. J., Hahn A. G., Hawley J. A. (2004) Improved running economy in elite runners after 20 days of simulated moderate-altitude exposure. Journal of Applied Physiology 96, 931-937. |
Schmitt L., Millet G., Robach P., Nicolet G., Brugniaux J. V., Fouillot J. P., Richalet J. P. (2006) Influence of “living high–training low” on aerobic performance and economy of work in elite athletes. European Journal of Applied Physiology 97, 627-636. |
Sinex J. A., Chapman R. F. (2015) Hypoxic training methods for improving endurance exercise performance. Journal of Sport & Health Science 4, 325-332. |
Stray-Gundersen J., Chapman R. F., Levine B. D. (2001) “Living high-training low” altitude training improves sea level performance in male and female elite runners. Journal of Applied Physiology 91, 1113-1120. |
Talma H., Chinapaw M. J., Bakker B., HiraSing R. A., Terwee C. B., Altenburg T. M. (2013) Bioelectrical impedance analysis to estimate body composition in children and adolescents: a systematic review and evidence appraisal of validity, responsiveness, reliability and measurement error. Obesity Review 14, 895-905. |
Wang J. S., Lee M. T., Lien H. Y., Weng T. P. (2014) Hypoxic exercise training improves cardiac/muscular hemodynamics and is associated with modulated circulating progenitor cells in sedentary men. International Journal of Cardiology 170, 315-323. |
Wehrlin J. P., Marti B. (2006) Live high-train low associated with increased haemoglobin mass as preparation for the 2003 World Championships in two native European world class runners. British Journal of Sports Medicine 40, e3. |
Wehrlin J. P., Zuest P., Hallén J., Marti B. (2006) Live high-train low for 24 days increases hemoglobin mass and red cell volume in elite endurance athletes. Journal of Applied Physiology 100, 1938-1945. |
Wilber R. L. (2007) Application of altitude/hypoxic training by elite athletes. Medicine & Science in Sports & Exercise 39, 1610-1624. |
|