This study revealed that MOS did not compromise muscle strength, unlike in SS, while DFROM was improved to a similar extent to that observed with SS. In addition, it was shown that the enhanced DFROM associated with MOS continued on for longer than that for SS. Previous studies reported that muscle functions (e.g. muscle strength and power) declined after SS (Herda et al., 2008; Kay and Blazevich, 2009; Sekir et al., 2010; Behm, and Chaouachi, 2011; Kay and Blazevich, 2012; Behm et al., 2016). Our results for SS coincided with those of these studies. In contrast, maximal voluntary plantar flexion torque was unchanged in MOS, and its relative change in MOS was not different from that in control, unlike in SS. Thus, MOS did not decrease muscle strength. SS is reported to decrease the neuromuscular activity during force production (Kay and Blazevich, 2009; Sekir et al., 2010; Trajano et al., 2017), but it is assumed that MOS does not reduce neuromuscular activity, due to maximal voluntary plantar flexion torque being unchanged. A previous study has shown that the intramuscular blood flow increases after the repetitive and passive stretch–shortening cycles of MTU (passive joint movement) (Hellsten et al., 2008). Therefore, further studies are required to examine the effects of MOS on metabolic responsiveness. In contrast, muscle strength/power can be improved after DS (Yamaguchi and Ishii, 2005; Sekir et al., 2010; Behm, and Chaouachi, 2011; Behm et al., 2016), and this has been attributed to conditioning effects through lengthening and shortening of the MTU and active force production during DS, although their relative contributions are unknown. MOS provided passive and repetitive small length changes to the MTU undergoing SS without active force production, however the muscle strength was not improved. This result suggests that active force produced could be a dominant trigger for improving muscle strength by DS. DFROM was significantly increased in both SS and MOS. This suggests that DFROM was increased by MOS by a SS-like effect on the plantar flexor MTU by dorsiflexing the ankle into the final ROM, similar to SS. An increase in muscle elongation due to SS has been thought to be caused by a decrease in passive muscle stiffness and changes in neurophysiological properties, including lowered stretch-reflex sensitivity (Weir et al., 2005; Morse et al., 2008; Mizuno et al., 2013; Taniguchi et al., 2015). Muscle elongation was comparable for MOS and SS, suggesting that the muscle was similarly affected by these 2 interventions. However, there was a tendency for the effect size of DFROM in MOS (d = 0.54: medium effect) to be larger than that in SS (d = 0.36: small effect). This could be explained by a greater decrease in musculotendinous stiffness in MOS compared with SS, resulting from passive and repetitive stretch–shortening cycles (Mutungi and Ranatunga, 1998; McNair et al., 2001; Avela et al., 2004; Yeh et al., 2007). No change was observed in tendon elongation in SS or MOS. The load-elongation relationship of the tendinous tissue is divided into the toe region (larger and nonlinear elongation to a smaller tensile force) and the linear region (stiffer and linear elongation-tension relation) (Jozsa and Kannus, 1997). DFROM measurements in both SS and MOS were performed at the intensity corresponding to 20% of the maximal voluntary plantar flexion torque, which may have been within the toe region of the tendon force-length relationship, where the effect on the tendon of stretching is not influential (Kubo et al., 2001; Kay and Blazevich, 2009). Previous studies have suggested that decreasing tendon stiffness contributes to the reductions in MTU stiffness after SS and DS (Samukawa et al., 2011; Behm et al., 2016). Further studies with different ranges of the tendon force-length relationship are required to clarify the effects of MOS on tendon stiffness. The improved flexibility subsided after 30 min in MOS, and within 15 min in SS. Previous studies reported the continuance of altered flexibility being between 10-120 min (Fowles et al., 2000; Power et al., 2004; Ryan et al., 2008; Sekir et al., 2010; Mizuno et al., 2013; Taniguchi et al., 2015) after SS, and 10 min after DS (Mizuno and Umemura, 2016). The continuance of altered flexibility in this study differs from these reports. This may be due to the differences in methodology with regards to duration and intensity of interventions. Neurophysiological changes caused by SS can affect the continuance of altered flexibility for ~2 min, and changes in the mechanical properties of muscular and tendinous tissues can keep altered flexibility for 8 min~ (Magnusson et al., 2000). It appears therefore that the continuing effect of MOS on flexibility is due to changes in muscle and tendon mechanical properties. Although further studies are required to clarify this mechanism, the present study indicates that MOS enhanced DFROM which then continued on for longer than enhancements induced by SS. The MOS developed in this study clearly differs from SS in that it provides repetitive small length changes to the MTU longitudinally, and also differs from typical DS in terms of the lack of active force produced; thus, MOS is a novel stretching technique. Factors not examined in the present study, e.g., combinations of different stroke lengths and frequencies, might lead to the development of more effective applications of MOS on flexibility and exercise performance improvement. In the present study, muscle activities were not measured; hence the extent of neuromuscular activity during measurements and stretching is unknown and the above argument remains largely speculative. The effects of MOS on neuromuscular activity are worth investigating in future studies. Although the present study involved subjects with a sufficient number to enable statistical analyses, future studies are warranted for a larger population including athletes. The effects of MOS on joint flexibility and muscle strength were not directly compared to the effects of DS as DS intervention was not performed in this study. DS does not sizably attenuate muscle functions, but it provides a smaller effect on flexibility than SS, and the effects of DS have been shown to persist for at least 10 min (Bacurau et al., 2009; Sekir et al., 2010; Mizuno and Umemura, 2016). MOS improves DFROM similarly to SS without decreasing strength, and the increased flexibility was retained until 30 min after MOS in this study. Therefore, it seems that MOS would be a better option for improving flexibility than DS. In the sport and clinical fields, using simple stretching maneuvers is required, and warm-ups are often combined with stretching and active exercises such as running and jumping. Future studies will apply the present findings to these fields, with the development of easier and operational methodologies for MOS, in combination with active exercises. |